Features

- High Performance, Low Power AVR®32 32-Bit Microcontroller
 - 210 DMIPS throughput at 150 MHz
 - 16 KB instruction cache and 16 KB data caches
 - Memory Management Unit enabling use of operating systems
 - Single-cycle RISC instruction set including SIMD and DSP instructions
 - Java Hardware Acceleration
- Pixel Co-Processor
 - Pixel Co-Processor for video acceleration through color-space conversion (YUV<->RGB), image scaling and filtering, guarter pixel motion compensation
- Multi-hierarchy bus system
- High-performance data transfers on separate buses for increased performance
 Data Memories
 - 32KBytes SRAM
- External Memory Interface
 - SDRAM, DataFlash[™], SRAM, Multi Media Card (MMC), Secure Digital (SD),
 - Compact Flash, Smart Media, NAND Flash
- Direct Memory Access Controller
 - External Memory access without CPU intervention
- Interrupt Controller
 - Individually maskable Interrupts
 - Each interrupt request has a programmable priority and autovector address
- System Functions
 - Power and Clock Manager
 - Crystal Oscillator with Phase-Lock-Loop (PLL)
 - Watchdog Timer
 - Real-time Clock
- 6 Multifunction timer/counters
 - Three external clock inputs, I/O pins, PWM, capture and various counting capabilities
- 4 Universal Synchronous/Asynchronous Receiver/Transmitters (USART)
 - 115.2 kbps IrDA Modulation and Demodulation
 - Hardware and software handshaking
- 3 Synchronous Serial Protocol controllers
- Supports I2S, SPI and generic frame-based protocols
- Two-Wire Interface
 - Sequential Read/Write Operations, Philips' I2C© compatible
- Image Sensor Interface
 - 12-bit Data Interface for CMOS cameras
- Universal Serial Bus (USB) 2.0 High Speed (480 Mbps) Device
- On-chip Transceivers with physical interface
- 16-bit stereo audio bitstream DAC
 - Sample rates up to 50 kHz
- On-Chip Debug System
 - Nexus Class 3
 - Full speed, non-intrusive data and program trace
 - Runtime control and JTAG interface
- Package/Pins
 - AT32AP7001: 208-pin QFP/ 90 GPIO pins
 - Power supplies
 - 1.65V to1.95V VDDCORE
 - 3.0V to 3.6V VDDIO

AVR[®]32 32-bit Microcontroller

AT32AP7001

Preliminary

Summary

1. Part Description

The AT32AP7001 is a complete System-on-chip application processor with an AVR32 RISC processor achieving 210 DMIPS running at 150 MHz. AVR32 is a high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption, high code density and high application performance.

AT32AP7001 implements a Memory Management Unit (MMU) and a flexible interrupt controller supporting modern operating systems and real-time operating systems. The processor also includes a rich set of DSP and SIMD instructions, specially designed for multimedia and telecom applications.

AT32AP7001 incorporates SRAM memories on-chip for fast and secure access. For applications requiring additional memory, external 16-bit SRAM is accessible. Additionally, an SDRAM controller provides off-chip volatile memory access as well as controllers for all industry standard off-chip non-volatile memories, like Compact Flash, Multi Media Card (MMC), Secure Digital (SD)-card, SmartCard, NAND Flash and Atmel DataFlash[™].

The Direct Memory Access controller for all the serial peripherals enables data transfer between memories without processor intervention. This reduces the processor overhead when transferring continuous and large data streams between modules in the MCU.

The Timer/Counters includes three identical 16-bit timer/counter channels. Each channel can be independently programmed to perform a wide range of functions including frequency measurement, event counting, interval measurement, pulse generation, delay timing and pulse width modulation.

A pixel co-processor provides color space conversions for images and video, in addition to a wide variety of hardware filter support

Synchronous Serial Controllers provide easy access to serial communication protocols, audio standards like I2S and frame-based protocols.

The Java hardware acceleration implementation in AVR32 allows for a very high-speed Java byte-code execution. AVR32 implements Java instructions in hardware, reusing the existing RISC data path, which allows for a near-zero hardware overhead and cost with a very high performance.

The Image Sensor Interface supports cameras with up to 12-bit data buses.

PS2 connectivity is provided for standard input devices like mice and keyboards.

AT32AP7001 integrates a class 3 Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive real-time trace, full-speed read/write memory access in addition to basic runtime control.

The C-compiler is closely linked to the architecture and is able to utilize code optimization features, both for size and speed.

2. Blockdiagram

2.0.1 AVR32AP CPU

- 32-bit load/store AVR32B RISC architecture.
 - Up to 15 general-purpose 32-bit registers.
 - 32-bit Stack Pointer, Program Counter and Link Register reside in register file.
 - Fully orthogonal instruction set.
 - Privileged and unprivileged modes enabling efficient and secure Operating Systems.
 - Innovative instruction set together with variable instruction length ensuring industry leading code density.
 - DSP extention with saturating arithmetic, and a wide variety of multiply instructions.
 - SIMD extention for media applications.
- 7 stage pipeline allows one instruction per clock cycle for most instructions.
 - Java Hardware Acceleration.
 - Byte, half-word, word and double word memory access.
 - Unaligned memory access.
 - Shadowed interrupt context for INT3 and multiple interrupt priority levels.
 - Dynamic branch prediction and return address stack for fast change-of-flow.
 - Coprocessor interface.
- Full MMU allows for operating systems with memory protection.
- 16Kbyte Instruction and 16Kbyte data caches.
 - Virtually indexed, physically tagged.
 - 4-way associative.
 - Write-through or write-back.
- Nexus Class 3 On-Chip Debug system.
 - Low-cost NanoTrace supported.

2.0.2 Pixel Coprocessor (PICO)

- Coprocessor coupled to the AVR32 CPU Core through the TCB Bus.
 - Coprocessor number one on the TCB bus.
- Three parallel Vector Multiplication Units (VMU) where each unit can:
 - Multiply three pixel components with three coefficients.
 - Add the products from the multiplications together.
 - Accumulate the result or add an offset to the sum of the products.
- Can be used for accelerating:
 - Image Color Space Conversion.
 - Configurable Conversion Coefficients.
 - · Supports packed and planar input and output formats.
 - Supports subsampled input color spaces (i.e 4:2:2, 4:2:0).
 - Image filtering/scaling.
 - Configurable Filter Coefficients.
 - Throughput of one sample per cycle for a 9-tap FIR filter.
 - Can use the built-in accumulator to extend the FIR filter to more than 9-taps.
 - Can be used for bilinear/bicubic interpolations.
 - MPEG-4/H.264 Quarter Pixel Motion Compensation.
- Flexible input Pixel Selector.
 - Can operate on numerous different image storage formats.
- Flexible Output Pixel Inserter.
 - Scales and saturates the results back to 8-bit pixel values.
 - Supports packed and planar output formats.

• Configurable coefficients with flexible fixed-point representation.

2.0.3 Debug and Test system

- IEEE1149.1 compliant JTAG and boundary scan
- Direct memory access and programming capabilities through JTAG interface
- Extensive On-Chip Debug features in compliance with IEEE-ISTO 5001-2003 (Nexus 2.0) Class 3
- Auxiliary port for high-speed trace information
- Hardware support for 6 Program and 2 data breakpoints
- Unlimited number of software breakpoints supported
- Advanced Program, Data, Ownership, and Watchpoint trace supported

2.0.4 DMA Controller

- 2 HSB Master Interfaces
- 3 Channels
- Software and Hardware Handshaking Interfaces
 - 11 Hardware Handshaking Interfaces
- Memory/Non-Memory Peripherals to Memory/Non-Memory Peripherals Transfer
- Single-block DMA Transfer
- Multi-block DMA Transfer
 - Linked Lists
 - Auto-Reloading
 - Contiguous Blocks
- DMA Controller is Always the Flow Controller
- Additional Features
 - Scatter and Gather Operations
 - Channel Locking
 - Bus Locking
 - FIFO Mode
 - Pseudo Fly-by Operation

2.0.5 Peripheral DMA Controller

- Transfers from/to peripheral to/from any memory space without intervention of the processor.
- Next Pointer Support, forbids strong real-time constraints on buffer management.
- Eighteen channels
 - Two for each USART
 - Two for each Serial Synchronous Controller
 - Two for each Serial Peripheral Interface

2.0.6 Bus system

- HSB bus matrix with 10 Masters and 8 Slaves handled
 - Handles Requests from the CPU Icache, CPU Dcache, HSB bridge, HISI, USB 2.0 Controller, DMA Controller 0, DMA Controller 1, and to internal SRAM 0, internal SRAM 1, PB A, PB B, EBI and, USB.

- Round-Robin Arbitration (three modes supported: no default master, last accessed default master, fixed default master)
- Burst Breaking with Slot Cycle Limit
- One Address Decoder Provided per Master
- 2 Peripheral buses allowing each bus to run on different bus speeds.
 - PB A intended to run on low clock speeds, with peripherals connected to the PDC.
 - PB B intended to run on higher clock speeds, with peripherals connected to the DMACA.
- HSB-HSB Bridge providing a low-speed HSB bus running at the same speed as PBA
 - Allows PDC transfers between a low-speed PB bus and a bus matrix of higher clock speeds

An overview of the bus system is given in Figure 2-1 on page 3. All modules connected to the same bus use the same clock, but the clock to each module can be individually shut off by the Power Manager. The figure identifies the number of master and slave interfaces of each module connected to the HSB bus, and which DMA controller is connected to which peripheral.

3. Package and Pinout

3.1 AVR32AP7001

Figure 3-1. 208 QFP Pinout.

Table 3-1.QFP-208 Package Pinout

		•					
1	GND	53	GND	105	GND	157	GND
2	PE17	54	PA23	106	PX13	158	PB10
3	PE18	55	PA24	107	PX14	159	PB11
4	PX47	56	XIN1	108	PX15	160	PB12
5	PX48	57	XOUT1	109	PX16	161	PB13
6	PX49	58	AVDDUSB	110	PX17	162	PB14
7	PX50	59	AGNDUSB	111	PX34	163	PB15
8	PX51	60	VDDIO	112	PX35	164	PB16
9	VDDIO	61	FSDM	113	PX36	165	PB17
10	PX32	62	FSDP	114	PX37	166	PB18
11	PX33	63	GND	115	PX38	167	PB19
12	PX00	64	GND	116	PX18	168	PB20
13	PX01	65	HSDM	117	PX19	169	PB21
14	PX02	66	HSDP	118	PX20	170	PB22
15	PX03	67	VDDCORE	119	PX21	171	PB23
16	PX04	68	GND	120	PX22	172	VDDCORE
17	PX05	69	GND	121	PX23	173	GND
18	VDDCORE	70	VBG	122	PX24	174	GND
19	GND	71	VDDIO	123	PX25	175	PA06
20	TDO	72	PA25	124	PX26	176	PA07
21	ТСК	73	PA26	125	VDDIO	177	VDDIO

 Table 3-1.
 QFP-208 Package Pinout (Continued)

Table 3		energe	out (Continued)				
22	TMS	74	PA27	126	PX27	178	VDDIO
23	TDI	75	PA28	127	PX28	179	OSCEN_N
24	TRST_N	76	PA29	128	PX29	180	XIN32
25	EVTI_N	77	PA30	129	PX30	181	XOUT32
26	RESET_N	78	PA31	130	PX31	182	AGNDOSC
27	PA00	79	WAKE_N	131	VDDCORE	183	AVDDOSC
28	PA01	80	PB26	132	GND	184	PLL1
29	PA02	81	PB27	133	GND	185	XINO
30	PA03	82	PB28	134	PE26	186	XOUT0
31	PA04	83	PX53	135	PX39	187	AGNDPLL
32	PA05	84	PX52	136	VDDCORE	188	AVDDPLL
33	PB24	85	PX41	137	GND	189	PLL0
34	PB25	86	GND	138	PX40	190	PE00
35	PA08	87	PE25	139	PX42	191	PE01
36	VDDIO	88	PE24	140	PX43	192	PE02
37	GND	89	PE23	141	PX44	193	PE03
38	PA09	90	PE22	142	PX45	194	PE04
39	PA10	91	PE21	143	PX46	195	PE05
40	PA11	92	PE20	144	PB00	196	PE06
41	PA12	93	PE19	145	PB01	197	PE07
42	PA13	94	PX06	146	PB02	198	PE08
43	PA14	95	PX07	147	PB03	199	PE09
44	PA15	96	PX08	148	PB04	200	PE10
45	PA16	97	PX09	149	PB05	201	PE11
46	PA17	98	PX10	150	PB06	202	PE12
47	PA18	99	PX11	151	PB07	203	PE13
48	PA19	100	PB29	152	PB08	204	PE14
49	PA20	101	PB30	153	PB09	205	PE15
50	PA21	102	PX12	154	PC16	206	PE16
51	PA22	103	PC00	155	PC17	207	No Connect
52	VDDIO	104	VDDIO	156	VDDIO	208	VDDIO

4. Signals Description

The following table gives details on the signal name classified by peripheral. The pinout multiplexing of these signals is given in the Peripheral Muxing table in the Peripherals chapter.

Table 4-1.Signal Description List

Signal Name	Function	Туре	Active Level	Comments
	Power			
AVDDPLL	PLL Power Supply	Power		1.65 to 1.95 V
AVDDUSB	USB Power Supply	Power		1.65 to 1.95 V
AVDDOSC	Oscillator Power Supply	Power		1.65 to 1.95 V
VDDCORE	Core Power Supply	Power		1.65 to 1.95 V
VDDIO	I/O Power Supply	Power		3.0 to 3.6V
AGNDPLL	PLL Ground	Ground		
AGNDUSB	USB Ground	Ground		
AGNDOSC	Oscillator Ground	Ground		
GND	Ground	Ground		
	Clocks, Oscillators,	and PLL's	1	l
XIN0, XIN1, XIN32	Crystal 0, 1, 32 Input	Analog		
XOUT0, XOUT1, XOUT32	Crystal 0, 1, 32 Output	Analog		
PLL0, PLL1	PLL 0,1 Filter Pin	Analog		
	JTAG		I	1
ТСК	Test Clock	Input		
TDI	Test Data In	Input		
TDO	Test Data Out	Output		
TMS	Test Mode Select	Input		
TRST_N	Test Reset	Input	Low	
	Auxiliary Port -	AUX	I	1
МСКО	Trace Data Output Clock	Output		
MDO0 - MDO5	Trace Data Output	Output		
MSEO0 - MSEO1	Trace Frame Control	Output		
EVTI_N	Event In	Input	Low	

Signal Name	Function	Туре	Active Level	Comments
EVTO_N	Event Out	Output	Low	
	Power Manage	r - PM	•	·
GCLK0 - GCLK4	Generic Clock Pins	Output		
OSCEN_N	Oscillator Enable	Input	Low	
RESET_N	Reset Pin	Input	Low	
WAKE_N	Wake Pin	Input	Low	
	External Interrupt Cor	ntroller - EIC	•	
EXTINT0 - EXTINT3	External Interrupt Pins	Input		
NMI_N	Non-Maskable Interrupt Pin	Input	Low	
	AC97 Controller -	AC97C	I	1
SCLK	AC97 Clock Signal	Input		
SDI	AC97 Receive Signal	Output		
SDO	AC97 Transmit Signal	Output		
SYNC	AC97 Frame Synchronization Signal	Input		
	Audio Bitstream DA	C - ABDAC	•	
DATA0 - DATA1	D/A Data Out	Output		
DATAN0 - DATAN1	D/A Inverted Data Out	Output		
	External Bus Inter	ace - EBI		
PX0 - PX53	I/O Controlled by EBI	I/O		
ADDR0 - ADDR25	Address Bus	Output		
CAS	Column Signal	Output	Low	
CFCE1	Compact Flash 1 Chip Enable	Output	Low	
CFCE2	Compact Flash 2 Chip Enable	Output	Low	
CFRNW	Compact Flash Read Not Write	Output		
DATA0 - DATA31	Data Bus	I/O		
NANDOE	NAND Flash Output Enable	Output	Low	
NANDWE	NAND Flash Write Enable	Output	Low	
NCS0 - NCS5	Chip Select	Output	Low	

Signal Name	Function	Туре	Active Level	Comments
NRD	Read Signal	Output	Low	
NWAIT	External Wait Signal	Input	Low	
NWE0	Write Enable 0	Output	Low	
NWE1	Write Enable 1	Output	Low	
NWE3	Write Enable 3	Output	Low	
RAS	Row Signal	Output	Low	
SDA10	SDRAM Address 10 Line	Output		
SDCK	SDRAM Clock	Output		
SDCKE	SDRAM Clock Enable	Output		
SDWE	SDRAM Write Enable	Output	Low	
	Image Sense	or Interface - ISI	l	
DATA0 - DATA11	Image Sensor Data	Input		
HSYNC	Horizontal Synchronization	Input		
PCLK	Image Sensor Data Clock	Input		
VSYNC	Vertical Synchronization	Input		
	MultiMedia Ca	ard Interface - MCI	•	
CLK	Multimedia Card Clock	Output		
CMD0 - CMD1	Multimedia Card Command	I/O		
DATA0 - DATA7	Multimedia Card Data	I/O		
	Parallel Input/Output - PI	OA, PIOB, PIOC, PI	OD, PIOE	
PA0 - PA31	Parallel I/O Controller PIOA	I/O		
PB0 - PB30	Parallel I/O Controller PIOB	I/O		
PD0 - PD17	Parallel I/O Controller PIOD	I/O		
PE0 - PE26	Parallel I/O Controller PIOE	I/O		
	PS2 Inte	erface - PSIF		
CLOCK0 - CLOCK1	PS2 Clock	Input		
DATA0 - DATA1	PS2 Data	I/O		
	Serial Peripheral	Interface - SPI0, SP	911	

Signal Name	Function	Туре	Active Level	Comments
MISO	Master In Slave Out	I/O		
MOSI	Master Out Slave In	I/O		
NPCS0 - NPCS3	SPI Peripheral Chip Select	I/O	Low	
SCK	Clock	Output		
	Synchronous Serial Controller	- SSC0, SSC	C1, SSC2	1
RX_CLOCK	SSC Receive Clock	I/O		
RX_DATA	SSC Receive Data	Input		
RX_FRAME_SYNC	SSC Receive Frame Sync	I/O		
TX_CLOCK	SSC Transmit Clock	I/O		
TX_DATA	SSC Transmit Data	Output		
TX_FRAME_SYNC	SSC Transmit Frame Sync	I/O		
	DMA Controller - I	DMACA		l
DMARQ0 - DMARQ3	DMA Requests	Input		
	Timer/Counter - TIME	R0, TIMER1	I	
A0	Channel 0 Line A	I/O		
A1	Channel 1 Line A	I/O		
A2	Channel 2 Line A	I/O		
B0	Channel 0 Line B	I/O		
B1	Channel 1 Line B	I/O		
B2	Channel 2 Line B	I/O		
CLK0	Channel 0 External Clock Input	Input		
CLK1	Channel 1 External Clock Input	Input		
CLK2	Channel 2 External Clock Input	Input		
	Two-wire Interface	e - TWI	<u>I</u>	L
SCL	Serial Clock	I/O		
SDA	Serial Data	I/O		
Universa	I Synchronous Asynchronous Receiver Transr	nitter - USA	RT0, USAR	T1, USART2, USART3
CLK	Clock	I/O		

Signal Name	Function	Туре	Active Level	Comments
CTS	Clear To Send	Input		
RTS	Request To Send	Output		
RXD	Receive Data	Input		
ТХD	Transmit Data	Output		
	Pulse Width Modulat	tor - PWM	L	
PWM0 - PWM3	PWM Output Pins	Output		
	USB Interface - U	JSBA	L	
HSDM	High Speed USB Interface Data -	Analog		
FSDM	Full Speed USB Interface Data -	Analog		
HSDP	High Speed USB Interface Data +	Analog		
FSDP	Full Speed USB Interface Data +	Analog		
VBG	USB bandgap	Analog		Connected to a 6810 Ohm \pm 0.5% resistor to gound and a 10 pF capacitor to ground.

5. Power Considerations

5.1 Power Supplies

The AT32AP7001 has several types of power supply pins:

- VDDCORE pins: Power the core, memories, and peripherals. Voltage is 1.8V nominal.
- VDDIO pins: Power I/O lines. Voltage is 3.3V nominal.
- VDDPLL pin: Powers the PLL. Voltage is 1.8V nominal.
- VDDUSB pin: Powers the USB. Voltage is 1.8V nominal.
- VDDOSC pin: Powers the oscillators. Voltage is 1.8V nominal.

The ground pins GND are common to VDDCORE and VDDIO. The ground pin for VDDPLL is GNDPLL, and the GND pin for VDDOSC is GNDOSC.

See "Electrical Characteristics" on page 928 for power consumption on the various supply pins.

5.2 Power Supply Connections

Special considerations should be made when connecting the power and ground pins on a PCB. Figure 5-1 shows how this should be done.

Figure 5-1. Connecting analog power supplies

6. I/O Line Considerations

6.1 JTAG pins

The TMS, TDI and TCK pins have pull-up resistors. TDO is an output, driven at up to VDDIO, and have no pull-up resistor. The TRST_N pin is used to initialize the embedded JTAG TAP Controller when asserted at a low level. It is a schmitt input and integrates permanent pull-up resistor to VDDIO, so that it can be left unconnected for normal operations.

6.2 WAKE_N pin

The WAKE_N pin is a schmitt trigger input integrating a permanent pull-up resistor to VDDIO.

6.3 RESET_N pin

The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case no reset from the system needs to be applied to the product.

6.4 EVTI_N pin

The EVTI_N pin is a schmitt input and integrates a non-programmable pull-up resistor to VDDIO.

6.5 TWI pins

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and inputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the pins have the same characteristics as PIO pins.

6.6 PIO pins

All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is performed independently for each I/O line through the PIO Controllers. After reset, I/O lines default as inputs with pull-up resistors enabled, except when indicated otherwise in the column "Reset State" of the PIO Controller multiplexing tables.

7. Memories

7.1 Embedded Memories

- 32 Kbyte SRAM
 - Implemented as two 16Kbyte blocks
 - Single cycle access at full bus speed

7.2 Physical Memory Map

The system bus is implemented as an HSB bus matrix. All system bus addresses are fixed, and they are never remapped in any way, not even in boot. Note that AT32AP7001 by default uses segment translation, as described in the AVR32 Architecture Manual. The 32 bit physical address space is mapped as follows:

Start Address	Size	Device
0x0000_0000	64 Mbyte	EBI SRAM CS0
0x0400_0000	64 Mbyte	EBI SRAM CS4
0x0800_0000	64 Mbyte	EBI SRAM CS2
0x0C00_0000	64 Mbyte	EBI SRAM CS3
0x1000_0000	256 Mbyte	EBI SRAM/SDRAM CS1
0x2000_0000	64 Mbyte	EBI SRAM CS5
0x2400_0000	16 Kbyte	Internal SRAM 0
0x2400_4000	16 Kbyte	Internal SRAM1
0xFF20_0000	1 KByte	DMACA configuration
0xFF30_0000	1 MByte	USBA Data
0xFFE0_0000	1 MByte	РВА
0xFFF0_0000	1 MByte	PBB

 Table 7-1.
 AT32AP7001 Physical Memory Map

Accesses to unused areas returns an error result to the master requesting such an access.

The bus matrix has the several masters and slaves. Each master has its own bus and its own decoder, thus allowing a different memory mapping per master. The master number in the table below can be used to index the HMATRIX control registers. For example, MCFG2 is associated with the HSB-HSB bridge.

Master 0	CPU Dcache
Master 1	CPU Icache
Master 2	HSB-HSB Bridge
Master 3	ISI DMA
Master 4	USBA DMA
Master 8	DMAC Master Interface 0
Master 9	DMAC Master Interface 1

Each slave has its own arbiter, thus allowing a different arbitration per slave. The slave number in the table below can be used to index the HMATRIX control registers. For example, SCFG3 is associated with PBB.

Slave 0	Internal SRAM 0
Slave 1	Internal SRAM1
Slave 2	РВА
Slave 3	PBB
Slave 4	EBI
Slave 5	USBA data
Slave 7	DMACA configuration

Table 7-3.HSB slaves

8. Peripherals

8.1 Peripheral address map

Table 8-1. Peripheral Address Mapping

Address		Peripheral Name	Bus
0xFF200000	DMACA	DMA Controller Slave Interface- DMACA	HSB
0xFF300000	USBA	USB Slave Interface - USBA	HSB
0xFFE00000	SPIO	Serial Peripheral Interface - SPI0	PB A
0xFFE00400	SPI1	– Serial Peripheral Interface - SPI1	PB A
0xFFE00800	TWI	Two-wire Interface - TWI	PB A
0xFFE00C00	USART0	Universal Synchronous Asynchronous Receiver Transmitter - USART0	PB A
0xFFE01000	USART1	Universal Synchronous Asynchronous Receiver Transmitter - USART1	PB A
0xFFE01400	USART2	Universal Synchronous Asynchronous Receiver Transmitter - USART2	PB A
0xFFE01800	USART3	Universal Synchronous Asynchronous Receiver Transmitter - USART3	PB A
0xFFE01C00	SSC0	Synchronous Serial Controller - SSC0	PB A
0xFFE02000	SSC1	Synchronous Serial Controller - SSC1	PB A
0xFFE02400	SSC2	Synchronous Serial Controller - SSC2	PB A
0xFFE02800	PIOA	Parallel Input/Output 2 - PIOA	PB A
0xFFE02C00	PIOB	Parallel Input/Output 2 - PIOB	PB A
0xFFE03000	PIOC	Parallel Input/Output 2 - PIOC	PB A
0xFFE03400	PIOD	Parallel Input/Output 2 - PIOD	PB A
0xFFE03800	PIOE	Parallel Input/Output 2 - PIOE	PB A

AT32AP7001

 Table 8-1.
 Peripheral Address Mapping (Continued)

oheral Addres	ss Mapping (Continued	l)	
Address		Peripheral Name	Bus
_			
0xFFE03C00	PSIF	PS2 Interface - PSIF	PB A
0xFFF00000	РМ	Power Manager - PM	PB B
0xFFF00080	RTC	Real Time Counter- RTC	PB B
0xFFF000B0	WDT	WatchDog Timer- WDT	PB B
0xFFF00100	EIC	External Interrupt Controller - EIC	PB B
0xFFF00400	INTC	Interrupt Controller - INTC	PB B
0xFFF00800	HMATRIX	HSB Matrix - HMATRIX	PB B
0xFFF00C00	TC0	Timer/Counter - TC0	PB B
0xFFF01000	TC1	Timer/Counter - TC1	PB B
0xFFF01400	PWM	Pulse Width Modulation Controller - PWM	PB B
0xFFF02000	ABDAC	Audio Bitstream DAC - ABDAC	PB B
0xFFF02400	MCI	MultiMedia Card Interface - MCI	PB B
0xFFF02800	AC97C	AC97 Controller - AC97C	PB B
0xFFF02C00	ISI	Image Sensor Interface - ISI	PB B
0xFFF03000	USBA	USB Configuration Interface - USBA	PB B
0xFFF03400	SMC	Static Memory Controller - SMC	PB B
0xFFF03800	SDRAMC	SDRAM Controller - SDRAMC	PB B
0xFFF03C00	ECC	Error Correcting Code Controller - ECC	PB B
I		1	

8.2 Interrupt Request Signal Map

The various modules may output interrupt request signals. These signals are routed to the Interrupt Controller (INTC). The Interrupt Controller supports up to 64 groups of interrupt requests. Each group can have up to 32 interrupt request signals. All interrupt signals in the same group share the same autovector address and priority level. Refer to the documentation for the individual submodules for a description of the semantic of the different interrupt requests.

The interrupt request signals in AT32AP7001 are connected to the INTC as follows:

Group	Line	Signal
0	0	COUNT-COMPARE match
	1	Performance Counter Overflow
2	0 DMACA BLOCK	
	1	DMACA DSTT
	2	DMACA ERR
	3	DMACA SRCT
	4	DMACA TFR
3	0	SPI 0
4	0	SPI 1
5	0	ТШ
6	0	USART0
7	0	USART1
8	0	USART2
9	0	USART3
10	0	SSC0
11	0	SSC1
12	0	SSC2
13	0	PIOA
14	0	PIOB
15	0	PIOC
16	0	PIOD
17	0	PIOE
18	0	PSIF
19	0	EICO
	1	EIC1
	2	EIC2
	3	EIC3
20	0	РМ
21	0	RTC

 Table 8-2.
 Interrupt Request Signal Map

Group	Line	Signal	
22	0	TC00	
	1	TC01	
	2	TC02	
23	0	TC10	
	1	TC11	
	2	TC12	
24	0	PWM	
27	0	ABDAC	
28	0	MCI	
29	0	AC97C	
30	0	ISI	
31	0	USBA	
32	0	EBI	

 Table 8-2.
 Interrupt Request Signal Map

8.3 DMACA Handshake Interface Map

The following table details the hardware handshake map between the DMACA and the peripherals attached to it: :

 Table 8-3.
 Hardware Handshaking Connection

Request	Hardware Handshaking Interface
MCI RX	0
MCI TX	1
ABDAC TX	2
AC97C CHANNEL A RX	3
AC97C CHANNEL A TX	4
AC97C CHANNEL B RX	5
AC97C CHANNEL B TX	6
EXTERNAL DMA REQUEST 0	7
EXTERNAL DMA REQUEST 1	8
EXTERNAL DMA REQUEST 2	9
EXTERNAL DMA REQUEST 3	10

8.4 Clock Connections

8.4.1 Timer/Counters

Each Timer/Counter channel can independently select an internal or external clock source for its counter:

Timer/Counter	Source	Name	Connection
0	Internal	TIMER_CLOCK1	clk_osc32
		TIMER_CLOCK2	clk_pbb / 4
		TIMER_CLOCK3	clk_pbb / 8
		TIMER_CLOCK4	clk_pbb / 16
		TIMER_CLOCK5	clk_pbb / 32
	External	XC0	See Section 8.7
		XC1	
		XC2	
1	Internal	TIMER_CLOCK1	clk_osc32
		TIMER_CLOCK2	clk_pbb / 4
		TIMER_CLOCK3	clk_pbb / 8
		TIMER_CLOCK4	clk_pbb / 16
		TIMER_CLOCK5	clk_pbb / 32
	External	XC0	See Section 8.7
		XC1	
		XC2	

Table 8-4.	Timer/Counter	clock connections

8.4.2 USARTs

Each USART can be connected to an internally divided clock:

Table 8-5.USART clock connections

USART	Source	Name	Connection
0	Internal	CLK_DIV	clk_pba / 8
1			
2			
3			

8.4.3 SPIs

Each SPI can be connected to an internally divided clock:

Table 8-6.SPI clock connections

SPI	Source	Name	Connection
0	Internal	CLK_DIV	clk_pba / 32
1			

8.4.4 USBA

OSC1 is connected to the USB HS Phy and must be 12 MHz when using the USBA.

8.5 External Interrupt Pin Mapping

External interrupt requests are connected to the following pins::

Source	Connection		
NMI_N	PB24		
EXTINT0	PB25		
EXTINT1	PB26		
EXTINT2	PB27		
EXTINT3	PB28		

 Table 8-7.
 External Interrupt Pin Mapping

8.6 Nexus OCD AUX port connections

If the OCD trace system is enabled, the trace system will take control over a number of pins, irrespectively of the PIO configuration. Two different OCD trace pin mappings are possible, depending on the configuration of the OCD AXS register. For details, see the *AVR32 AP Technical Reference Manual*.

Pin	AXS=0	AXS=1
EVTI_N	EVTI_N	EVTI_N
MDO[5]	PB09	PC18
MDO[4]	PB08	PC14
MDO[3]	PB07	PC12
MDO[2]	PB06	PC11
MDO[1]	PB05	PC06
MDO[0]	PB04	PC05
EVTO_N	PB03	PB28
МСКО	PB02	PC02
MSEO[1]	PB01	PC01
MSEO[0]	PB00	PC00

 Table 8-8.
 Nexus OCD AUX port connections

8.7 Peripheral Multiplexing on IO lines

The AT32AP7001 features five PIO controllers, PIOA to PIOE, that multiplex the I/O lines of the peripheral set. Each PIO Controller controls up to thirty-two lines.

Each line can be assigned to one of two peripheral functions, A or B. The tables in the following pages define how the I/O lines of the peripherals A and B are multiplexed on the PIO Controllers.

Note that some output only peripheral functions might be duplicated within the tables.

8.7.1 PIO Controller A Multiplexing

OFP208V/O LinePeripheral APeripheral B27PA00SPI0-MISOSSC1 FX_FRAME_SYNC28PA01SPI0-MOSISSC1 TX_FRAME_SYNC29PA02SPI0-SCKSSC1 TX_CLOCK30PA03SPI0-NPCS[0]SSC1 TX_CLOCK31PA04SPI0-NPCS[1]SSC1 TX_DATA32PA05SPI0-NPCS[2]SSC1 FX_DATA175PA06TWI-SDAUSART0-RTS176PA07TWI-SCLUSART0-RTS33PA08PSIF-CLOCKUSART0-RXD34PA09PSIF-DATAUSART0-TXD35PA08MCI-CLKUSART0-CLK40PA10MCI-CDMTC0-CLKO41PA12MCI-DATA[1]TC0-A142PA14MCI-DATA[2]TC0-A244PA15MCI-DATA[3]TC0-B145PA16USART1-CLKTC0-B146PA17USART1-TXDTC0-CLK147PA19USART1-TXDTC0-CLK148PA19USART1-TXDTC0-CLK149PA2SC0-RX_FRAME_SYNCPWM-PWM[2]51PA2SC0-RX_CLOCKPWM-PWM[3]54PA2SC0-TX_CLOCKTC1-A055PA2SC0-TX_CLATTC1-A172PA2SC0-TX_DATATC1-A173PA2SC0-TX_DATATC1-A174PA2SC0-TX_DATATC1-A175PA2SC0-TX_DATATC1-A174PA2SC0-TX_DATATC1-A1<	able 8-9. PIO Controller A Multiplexing				
28PA01SPI0 - MOSISSC1 - TX_FRAME_SYNC29PA02SPI0 - SCKSSC1 - TX_CLOCK30PA03SPI0 - NPCS[0]SSC1 - TX_CLOCK31PA04SPI0 - NPCS[1]SSC1 - TX_DATA32PA05SPI0 - NPCS[2]SSC1 - TX_DATA175PA06TWI - SDAUSART0 - RTS176PA07TWI - SCLUSART0 - CTS35PA08PSIF - CLOCKUSART0 - TXD38PA09PSIF - DATAUSART0 - CLK40PA11MCI - CLKUSART0 - CLK41PA12MCI - DATA[0]TC0 - CLKO42PA13MCI - DATA[1]TC0 - A143PA14MCI - DATA[3]TC0 - A244PA15MCI - DATA[3]TC0 - B045PA16USART1 - CLKTC0 - B146PA17USART1 - TXDTC0 - CLK247PA18USART1 - TXDTC0 - CLK149PA20USART1 - CTSSPI0 - NPCS[3]50PA21SSC0 - RX_CLOCKPWM - PWM[2]51PA23SSC0 - TX_CLOCKTC1 - A055PA24SSC0 - TX_FRAME_SYNCTC1 - A172PA26SSC0 - RX_DATATC1 - B174PA27SPI1 - NPCS[3]TC1 - CLK0	QFP208	I/O Line	Peripheral A	Peripheral B	
29 PA02 SPI0 - SCK SSC1 - TX_CLOCK 30 PA03 SPI0 - NPCS[0] SSC1 - RX_CLOCK 31 PA04 SPI0 - NPCS[1] SSC1 - TX_DATA 32 PA05 SPI0 - NPCS[2] SSC1 - RX_DATA 32 PA06 TWI - SDA USART0 - RTS 175 PA06 TWI - SCL USART0 - RXD 38 PA09 PSIF - CLOCK USART0 - TXD 39 PA10 MCI - CLK USART0 - CLK 40 PA11 MCI - CMD TC0 - CLKO 41 PA12 MCI - DATA[0] TC0 - A0 42 PA13 MCI - DATA[1] TC0 - A1 43 PA14 MCI - DATA[2] TC0 - A2 44 PA15 MCI - DATA[3] TC0 - B0 45 PA16 USART1 - CLK TC0 - B1 46 PA17 USART1 - RXD TC0 - CLK2 48 PA19 USART1 - CTS SPI0 - NPCS[3] 50 PA20 USART1 - CTS SPI0 - NPCS[3]	27	PA00	SPI0 - MISO	SSC1 - RX_FRAME_SYNC	
30 PA03 SPI0 - NPCS[0] SSC1 - RX_CLOCK 31 PA04 SPI0 - NPCS[1] SSC1 - TX_DATA 32 PA05 SPI0 - NPCS[2] SSC1 - RX_DATA 32 PA06 TWI - SDA USART0 - RTS 175 PA06 TWI - SCL USART0 - CTS 35 PA08 PSIF - CLOCK USART0 - RXD 38 PA09 PSIF - DATA USART0 - CLK 40 PA11 MCI - CLK USART0 - CLK 40 PA11 MCI - CMD TC0 - CLK0 41 PA12 MCI - DATA[0] TC0 - A0 42 PA13 MCI - DATA[1] TC0 - A1 43 PA14 MCI - DATA[2] TC0 - A2 44 PA15 MCI - DATA[3] TC0 - B0 45 PA16 USART1 - CLK TC0 - B1 46 PA17 USART1 - RTS TC0 - CLK2 48 PA19 USART1 - CTS SPI0 - NPCS[3] 50 PA20 USART1 - CTS SPI0 - NPCS[3]	28	PA01	SPI0 - MOSI	SSC1 - TX_FRAME_SYNC	
PA04 SPI0 - NPCS[1] SSC1 - TX_DATA 31 PA04 SPI0 - NPCS[1] SSC1 - TX_DATA 32 PA05 SPI0 - NPCS[2] SSC1 - RX_DATA 175 PA06 TWI - SDA USART0 - RTS 176 PA07 TWI - SCL USART0 - CTS 35 PA08 PSIF - CLOCK USART0 - TXD 38 PA09 PSIF - DATA USART0 - CLK 40 PA10 MCI - CLK USART0 - CLK 40 PA11 MCI - DATA[0] TC0 - CLKO 41 PA12 MCI - DATA[1] TC0 - A0 42 PA13 MCI - DATA[2] TC0 - A2 44 PA15 MCI - DATA[3] TC0 - B0 45 PA16 USART1 - CLK TC0 - B1 46 PA17 USART1 - TXD TC0 - CLK2 48 PA19 USART1 - CTS SPI0 - NPCS[3] 50 PA20 USART1 - CTS SPI0 - NPCS[3] 51 PA20 USART1 - CTS SPI0 - NPCS[3]	29	PA02	SPI0 - SCK	SSC1 - TX_CLOCK	
32 PA05 SPI0 - NPCS[2] SSC1 - RX_DATA 175 PA06 TWI - SDA USART0 - RTS 176 PA07 TWI - SCL USART0 - CTS 35 PA08 PSIF - CLOCK USART0 - RXD 38 PA09 PSIF - DATA USART0 - CLK 39 PA10 MCI - CLK USART0 - CLK 40 PA11 MCI - CMD TC0 - CLK0 41 PA12 MCI - DATA[0] TC0 - A0 42 PA13 MCI - DATA[2] TC0 - A1 43 PA15 MCI - DATA[2] TC0 - B0 44 PA15 MCI - DATA[3] TC0 - B1 45 PA16 USART1 - CLK TC0 - CLK2 48 PA19 USART1 - RXD TC0 - CLK2 48 PA19 USART1 - TXD TC0 - CLK1 49 PA20 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_FRAME_SYNC PWM - PWM[2] 51 PA22 SSC0 - TX_CLOCK PWM - PWM[3]	30	PA03	SPI0 - NPCS[0]	SSC1 - RX_CLOCK	
175 PA06 TWI - SDA USARTO - RTS 176 PA07 TWI - SCL USARTO - CTS 35 PA08 PSIF - CLOCK USARTO - RXD 38 PA09 PSIF - DATA USARTO - TXD 39 PA10 MCI - CLK USARTO - CLK 40 PA11 MCI - CMD TCO - CLK0 41 PA12 MCI - DATA[0] TCO - A0 42 PA13 MCI - DATA[2] TCO - A1 43 PA14 MCI - DATA[3] TCO - B0 45 PA16 USART1 - CLK TCO - B1 46 PA17 USART1 - RXD TCO - CLK2 48 PA19 USART1 - RTS TCO - CLK2 48 PA19 USART1 - RTS SPI0 - NPCS[3] 50 PA21 SSCO - RX_FRAME_SYNC PWM - PWM[2] 51 PA23 SSCO - TX_CLOCK PWM - PWM[3] 54 PA24 SSCO - TX_DATA TC1 - A1 72 PA25 SSCO - TX_DATA TC1 - B1	31	PA04	SPI0 - NPCS[1]	SSC1 - TX_DATA	
176 PA07 TWI - SCL USART0 - CTS 35 PA08 PSIF - CLOCK USART0 - RXD 38 PA09 PSIF - DATA USART0 - TXD 39 PA10 MCI - CLK USART0 - CLK 40 PA11 MCI - CMD TC0 - CLK0 41 PA12 MCI - DATA[0] TC0 - A0 42 PA13 MCI - DATA[1] TC0 - A1 43 PA14 MCI - DATA[2] TC0 - A2 44 PA15 MCI - DATA[3] TC0 - B0 45 PA16 USART1 - CLK TC0 - B1 46 PA17 USART1 - RXD TC0 - CLK2 48 PA19 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_FRAME_SYNC PWM - PWM[2] 51 PA23 SSC0 - TX_CLOCK PWM - PWM[3] 54 PA24 SSC0 - TX_DATA TC1 - A1 72 PA26 SSC0 - TX_DATA TC1 - B1 73 PA26 SSC0 - TX_DATA TC1 - CLK0 <td>32</td> <td>PA05</td> <td>SPI0 - NPCS[2]</td> <td>SSC1 - RX_DATA</td>	32	PA05	SPI0 - NPCS[2]	SSC1 - RX_DATA	
35 PA08 PSIF - CLOCK USART0 - RXD 38 PA09 PSIF - DATA USART0 - TXD 39 PA10 MCI - CLK USART0 - CLK 40 PA11 MCI - CMD TC0 - CLK0 41 PA12 MCI - DATA[0] TC0 - A0 42 PA13 MCI - DATA[1] TC0 - A1 43 PA14 MCI - DATA[2] TC0 - A2 44 PA15 MCI - DATA[3] TC0 - B0 45 PA16 USART1 - CLK TC0 - B1 46 PA17 USART1 - RXD TC0 - CLK2 47 PA18 USART1 - RXD TC0 - CLK2 48 PA19 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_CLOCK PWM - PWM[2] 51 PA23 SSC0 - TX_CLOCK TC1 - A1 72 PA25 SSC0 - TX_DATA TC1 - B1 73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA26 SSC0 - RX_DATA TC1 - CLK0	175	PA06	TWI - SDA	USART0 - RTS	
38 PA09 PSIF - DATA USART0 - TXD 39 PA10 MCI - CLK USART0 - CLK 40 PA11 MCI - CMD TC0 - CLK0 41 PA12 MCI - DATA[0] TC0 - A0 42 PA13 MCI - DATA[1] TC0 - A1 43 PA14 MCI - DATA[2] TC0 - A2 44 PA15 MCI - DATA[3] TC0 - B0 45 PA16 USART1 - CLK TC0 - B1 46 PA17 USART1 - TXD TC0 - CLK2 47 PA18 USART1 - TXD TC0 - CLK2 48 PA19 USART1 - TXD TC0 - CLK2 49 PA20 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_FRAME_SYNC PWM - PWM[2] 51 PA23 SSC0 - TX_CLOCK TC1 - A0 55 PA24 SSC0 - TX_DATA TC1 - A1 72 PA25 SSC0 - TX_DATA TC1 - B0 73 PA26 SSC0 - RX_DATA TC1 - CLK0 <td>176</td> <td>PA07</td> <td>TWI - SCL</td> <td>USART0 - CTS</td>	176	PA07	TWI - SCL	USART0 - CTS	
39 PA10 MCI - CLK USART0 - CLK 40 PA11 MCI - CMD TC0 - CLK0 41 PA12 MCI - DATA[0] TC0 - A0 42 PA13 MCI - DATA[1] TC0 - A1 43 PA14 MCI - DATA[2] TC0 - A2 44 PA15 MCI - DATA[3] TC0 - B0 45 PA16 USART1 - CLK TC0 - B1 46 PA17 USART1 - RXD TC0 - CLK2 47 PA18 USART1 - TXD TC0 - CLK2 48 PA19 USART1 - TXD TC0 - CLK1 49 PA20 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_CLOCK PWM - PWM[2] 51 PA23 SSC0 - TX_CLOCK PWM - PWM[3] 54 PA24 SSC0 - TX_CLOCK TC1 - A0 55 PA24 SSC0 - TX_DATA TC1 - B0 73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	35	PA08	PSIF - CLOCK	USART0 - RXD	
40 PA11 MCI - CMD TC0 - CLK0 41 PA12 MCI - DATA[0] TC0 - A0 42 PA13 MCI - DATA[1] TC0 - A1 43 PA14 MCI - DATA[2] TC0 - A2 44 PA15 MCI - DATA[3] TC0 - B0 45 PA16 USART1 - CLK TC0 - B1 46 PA17 USART1 - RXD TC0 - CLK2 48 PA19 USART1 - TXD TC0 - CLK1 49 PA20 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_CLOCK PWM - PWM[2] 51 PA23 SSC0 - TX_CLOCK TC1 - A0 54 PA24 SSC0 - TX_DATA TC1 - B0 73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA26 SSC0 - RX_DATA TC1 - CLK0	38	PA09	PSIF - DATA	USART0 - TXD	
41 PA12 MCI - DATA[0] TC0 - A0 42 PA13 MCI - DATA[1] TC0 - A1 43 PA14 MCI - DATA[2] TC0 - A2 44 PA15 MCI - DATA[3] TC0 - B0 45 PA16 USART1 - CLK TC0 - B1 46 PA17 USART1 - RXD TC0 - CLK2 48 PA19 USART1 - TXD TC0 - CLK2 48 PA19 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_FRAME_SYNC PWM - PWM[2] 51 PA23 SSC0 - TX_CLOCK PWM - PWM[3] 54 PA24 SSC0 - TX_FRAME_SYNC TC1 - A1 72 PA25 SSC0 - RX_DATA TC1 - B0 73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	39	PA10	MCI - CLK	USART0 - CLK	
42 PA13 MCI - DATA[1] TC0 - A1 43 PA14 MCI - DATA[2] TC0 - A2 44 PA15 MCI - DATA[3] TC0 - B0 45 PA16 USART1 - CLK TC0 - B1 46 PA17 USART1 - RXD TC0 - CLK2 47 PA18 USART1 - TXD TC0 - CLK1 48 PA19 USART1 - RTS TC0 - CLK1 49 PA20 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_FRAME_SYNC PWM - PWM[2] 51 PA22 SSC0 - RX_CLOCK PWM - PWM[3] 54 PA23 SSC0 - TX_CLOCK TC1 - A0 55 PA24 SSC0 - TX_FRAME_SYNC TC1 - A1 72 PA25 SSC0 - TX_DATA TC1 - B1 73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	40	PA11	MCI - CMD	TC0 - CLK0	
43 PA14 MCI - DATA[2] TC0 - A2 44 PA15 MCI - DATA[3] TC0 - B0 45 PA16 USART1 - CLK TC0 - B1 46 PA17 USART1 - RXD TC0 - CLK2 47 PA18 USART1 - TXD TC0 - CLK2 48 PA19 USART1 - CTS SPI0 - NPCS[3] 50 PA20 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_FRAME_SYNC PWM - PWM[2] 51 PA22 SSC0 - TX_CLOCK PWM - PWM[3] 54 PA23 SSC0 - TX_FRAME_SYNC TC1 - A0 55 PA24 SSC0 - TX_DATA TC1 - B1 72 PA25 SSC0 - TX_DATA TC1 - B1 73 PA26 SSC0 - TX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	41	PA12	MCI - DATA[0]	TC0 - A0	
44 PA15 MCI - DATA[3] TC0 - B0 45 PA16 USART1 - CLK TC0 - B1 46 PA17 USART1 - RXD TC0 - B2 47 PA18 USART1 - TXD TC0 - CLK2 48 PA19 USART1 - RTS TC0 - CLK1 49 PA20 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_FRAME_SYNC PWM - PWM[2] 51 PA22 SSC0 - TX_CLOCK PWM - PWM[3] 54 PA24 SSC0 - TX_FRAME_SYNC TC1 - A0 55 PA24 SSC0 - TX_DATA TC1 - B0 73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	42	PA13	MCI - DATA[1]	TC0 - A1	
45 PA16 USART1 - CLK TC0 - B1 46 PA17 USART1 - RXD TC0 - B2 47 PA18 USART1 - TXD TC0 - CLK2 48 PA19 USART1 - RTS TC0 - CLK1 49 PA20 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_FRAME_SYNC PWM - PWM[2] 51 PA22 SSC0 - RX_CLOCK PWM - PWM[3] 54 PA23 SSC0 - TX_CLOCK TC1 - A0 55 PA24 SSC0 - TX_DATA TC1 - B0 72 PA26 SSC0 - RX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	43	PA14	MCI - DATA[2]	TC0 - A2	
46 PA17 USART1 - RXD TC0 - B2 47 PA18 USART1 - TXD TC0 - CLK2 48 PA19 USART1 - RTS TC0 - CLK1 49 PA20 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_FRAME_SYNC PWM - PWM[2] 51 PA22 SSC0 - RX_CLOCK PWM - PWM[3] 54 PA23 SSC0 - TX_CLOCK TC1 - A0 55 PA24 SSC0 - TX_DATA TC1 - B0 72 PA25 SSC0 - RX_DATA TC1 - B1 73 PA26 SSC0 - RX_DATA TC1 - CLK0	44	PA15	MCI - DATA[3]	TC0 - B0	
47 PA18 USART1 - TXD TC0 - CLK2 48 PA19 USART1 - RTS TC0 - CLK1 49 PA20 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_FRAME_SYNC PWM - PWM[2] 51 PA22 SSC0 - RX_CLOCK PWM - PWM[3] 54 PA23 SSC0 - TX_CLOCK TC1 - A0 55 PA24 SSC0 - TX_FRAME_SYNC TC1 - A1 72 PA25 SSC0 - TX_DATA TC1 - B0 73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	45	PA16	USART1 - CLK	TC0 - B1	
48 PA19 USART1 - RTS TC0 - CLK1 49 PA20 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_FRAME_SYNC PWM - PWM[2] 51 PA22 SSC0 - RX_CLOCK PWM - PWM[3] 54 PA23 SSC0 - TX_CLOCK TC1 - A0 55 PA24 SSC0 - TX_FRAME_SYNC TC1 - A1 72 PA25 SSC0 - TX_DATA TC1 - B0 73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	46	PA17	USART1 - RXD	TC0 - B2	
49 PA20 USART1 - CTS SPI0 - NPCS[3] 50 PA21 SSC0 - RX_FRAME_SYNC PWM - PWM[2] 51 PA22 SSC0 - RX_CLOCK PWM - PWM[3] 54 PA23 SSC0 - TX_CLOCK TC1 - A0 55 PA24 SSC0 - TX_FRAME_SYNC TC1 - A1 72 PA25 SSC0 - TX_DATA TC1 - B0 73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	47	PA18	USART1 - TXD	TC0 - CLK2	
50 PA21 SSC0 - RX_FRAME_SYNC PWM - PWM[2] 51 PA22 SSC0 - RX_CLOCK PWM - PWM[3] 54 PA23 SSC0 - TX_CLOCK TC1 - A0 55 PA24 SSC0 - TX_FRAME_SYNC TC1 - A1 72 PA25 SSC0 - TX_DATA TC1 - B0 73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	48	PA19	USART1 - RTS	TC0 - CLK1	
51 PA22 SSC0 - RX_CLOCK PWM - PWM[3] 54 PA23 SSC0 - TX_CLOCK TC1 - A0 55 PA24 SSC0 - TX_FRAME_SYNC TC1 - A1 72 PA25 SSC0 - TX_DATA TC1 - B0 73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	49	PA20	USART1 - CTS	SPI0 - NPCS[3]	
54 PA23 SSC0 - TX_CLOCK TC1 - A0 55 PA24 SSC0 - TX_FRAME_SYNC TC1 - A1 72 PA25 SSC0 - TX_DATA TC1 - B0 73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	50	PA21	SSC0 - RX_FRAME_SYNC	PWM - PWM[2]	
55 PA24 SSC0 - TX_FRAME_SYNC TC1 - A1 72 PA25 SSC0 - TX_DATA TC1 - B0 73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	51	PA22	SSC0 - RX_CLOCK	PWM - PWM[3]	
72 PA25 SSC0 - TX_DATA TC1 - B0 73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	54	PA23	SSC0 - TX_CLOCK	TC1 - A0	
73 PA26 SSC0 - RX_DATA TC1 - B1 74 PA27 SPI1 - NPCS[3] TC1 - CLK0	55	PA24	SSC0 - TX_FRAME_SYNC	TC1 - A1	
74 PA27 SPI1 - NPCS[3] TC1 - CLK0	72	PA25	SSC0 - TX_DATA	TC1 - B0	
	73	PA26	SSC0 - RX_DATA	TC1 - B1	
75 PA28 PWM - PWM[0] TC1 - A2	74	PA27	SPI1 - NPCS[3]	TC1 - CLK0	
	75	PA28	PWM - PWM[0]	TC1 - A2	

 Table 8-9.
 PIO Controller A Multiplexing

Table 8-9.PIO Controller A Multiplexing

76	PA29	PWM - PWM[1]	TC1 - B2
77	PA30	PM - GCLK[0]	TC1 - CLK1
78	PA31	PM - GCLK[1]	TC1 - CLK2

8.7.2 PIO Controller B Multiplexing

QFP208	I/O Line	Peripheral A	Peripheral B	
144	PB00	ISI - DATA[0]	SPI1 - MISO	
145	PB01	ISI - DATA[1]	SPI1 - MOSI	
146	PB02	ISI - DATA[2]	SPI1 - NPCS[0]	
147	PB03	ISI - DATA[3]	SPI1 - NPCS[1]	
148	PB04	ISI - DATA[4]	SPI1 - NPCS[2]	
149	PB05	ISI - DATA[5]	SPI1 - SCK	
150	PB06	ISI - DATA[6]	MCI - CMD[1]	
151	PB07	ISI - DATA[7]	MCI - DATA[4]	
152	PB08	ISI - HSYNC	MCI - DATA[5]	
153	PB09	ISI - VSYNC	MCI - DATA[6]	
158	PB10	ISI - PCLK	MCI - DATA[7]	
159	PB11	PSIF - CLOCK[1]	ISI - DATA[8]	
160	PB12	PSIF - DATA[1]	ISI - DATA[9]	
161	PB13	SSC2 - TX_DATA	ISI - DATA[10]	
162	PB14	SSC2 - RX_DATA	ISI - DATA[11]	
163	PB15	SSC2 - TX_CLOCK	USART3 - CTS	
164	PB16	SSC2 - TX_FRAME_SYNC	USART3 - RTS	
165	PB17	SSC2 - RX_FRAME_SYNC	USART3 - TXD	
166	PB18	SSC2 - RX_CLOCK	USART3 - RXD	
167	PB19	PM - GCLK[2]	USART3 - CLK	
168	PB20	ABDAC - DATA[1]	AC97C - SDO	
169	PB21	ABDAC - DATA[0]	AC97C - SYNC	
170	PB22	ABDAC - DATAN[1]	AC97C - SCLK	
171	PB23	ABDAC - DATAN[0]	AC97C - SDI	
33	PB24	NMI_N	DMACA - DMARQ[0]	
34	PB25	EXTINT0	DMACA - DMARQ[1]	
80	PB26	EXTINT1	USART2 - RXD	
81	PB27	EXTINT2	USART2 - TXD	
82	PB28	EXTINT3	USART2 - CLK	
100	PB29	PM - GCLK[3]	USART2 - CTS	
101	PB30	PM - GCLK[4]	USART2 - RTS	

Table 8-10. PIO Controller B Multiplexing

8.7.3 PIO Controller E Multiplexing

|--|

QFP208	I/O Line	Peripheral A	Peripheral B
190	PE00	EBI - DATA[16]	
191	PE01	EBI - DATA[17]	
192	PE02	EBI - DATA[18]	
193	PE03	EBI - DATA[19]	
194	PE04	EBI - DATA[20]	
195	PE05	EBI - DATA[21]	
196	PE06	EBI - DATA[22]	
197	PE07	EBI - DATA[23]	
198	PE08	EBI - DATA[24]	
199	PE09	EBI - DATA[25]	
200	PE10	EBI - DATA[26]	
201	PE11	EBI - DATA[27]	
202	PE12	EBI - DATA[28]	
203	PE13	EBI - DATA[29]	
204	PE14	EBI - DATA[30]	
205	PE15	EBI - DATA[31]	
206	PE16	EBI - ADDR[23]	
2	PE17	EBI - ADDR[24]	
3	PE18	EBI - ADDR[25]	
93	PE19	EBI - CFCE1	
92	PE20	EBI - CFCE2	
91	PE21	EBI - NCS[4]	
90	PE22	EBI - NCS[5]	
89	PE23	EBI - CFRNW	
88	PE24	EBI - NWAIT	
87	PE25	EBI - NCS[2]	

8.7.4 IO Pins Without Multiplexing

Many of the external EBI pins are not controlled by the PIO modules, but directly driven by the EBI. These pins have programmable pullup resistors. These resistors are controlled by Special Function Register 4 (SFR4) in the HMATRIX. The pullup on the lines multiplexed with PIO is controlled by the appropriate PIO control register.

This SFR can also control CompactFlash, SmartMedia or NandFlash Support, see the EBI chapter for details

Name:		HMATE	RIX_SFR4				
Access Type:		Read/V	Vrite				
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
_	_	-	-	-	-	_	EBI_DBPUC
7	6	5	4	3	2	1	0
_	-	EBI_CS5A	EBI_CS4A	EBI_CS3A	—	EBI_CS1A	-

8.7.4.1 HMatrix SFR4 EBI Control Register

• CS1A: Chip Select 1 Assignment

0 = Chip Select 1 is assigned to the Static Memory Controller.

1 = Chip Select 1 is assigned to the SDRAM Controller.

CS3A: Chip Select 3 Assignment

0 = Chip Select 3 is only assigned to the Static Memory Controller and NCS3 behaves as defined by the SMC.

1 = Chip Select 3 is assigned to the Static Memory Controller and the NAND Flash/SmartMedia Logic is activated.

CS4A: Chip Select 4 Assignment

0 = Chip Select 4 is assigned to the Static Memory Controller and NCS4, NCS5 and NCS6 behave as defined by the SMC.

1 = Chip Select 4 is assigned to the Static Memory Controller and the CompactFlash Logic is activated.

CS5A: Chip Select 5 Assignment

0 = Chip Select 5 is assigned to the Static Memory Controller and NCS4, NCS5 and NCS6 behave as defined by the SMC.

1 = Chip Select 5 is assigned to the Static Memory Controller and the CompactFlash Logic is activated.

Accessing the address space reserved to NCS5 and NCS6 may lead to an unpredictable outcome.

• EBI_DBPUC: EBI Data Bus Pull-up Control

0: EBI D[15:0] are internally pulled up to the VDDIO power supply. The pull-up resistors are enabled after reset.

1: EBI D[15:0] are not internally pulled up.

 Table 8-12.
 IO Pins without multiplexing

I/O Line	Function
PX00	EBI - DATA[0]
PX01	EBI - DATA[1]
PX02	EBI - DATA[2]
PX03	EBI - DATA[3]
PX04	EBI - DATA[4]
PX05	EBI - DATA[5]
PX06	EBI - DATA[6]
PX07	EBI - DATA[7]
PX08	EBI - DATA[8]
PX09	EBI - DATA[9]
PX10	EBI - DATA[10]
PX11	EBI - DATA[11]
PX12	EBI - DATA[12]
PX13	EBI - DATA[13]
PX14	EBI - DATA[14]
PX15	EBI - DATA[15]
PX16	EBI - ADDR[0]
PX17	EBI - ADDR[1]
PX18	EBI - ADDR[2]
PX19	EBI - ADDR[3]
PX20	EBI - ADDR[4]
PX21	EBI - ADDR[5]
PX22	EBI - ADDR[6]
PX23	EBI - ADDR[7]
PX24	EBI - ADDR[8]
PX25	EBI - ADDR[9]
PX26	EBI - ADDR[10]
PX27	EBI - ADDR[11]
PX28	EBI - ADDR[12]
PX29	EBI - ADDR[13]
PX30	EBI - ADDR[14]
PX31	EBI - ADDR[15]

PX32	EBI - ADDR[16]
PX33	EBI - ADDR[17]
PX34	EBI - ADDR[18]
PX35	EBI - ADDR[19]
PX36	EBI - ADDR[20]
PX37	EBI - ADDR[21]
PX38	EBI - ADDR[22]
PX39	EBI - NCS[0]
PX40	EBI - NCS[1]
PX41	EBI - NCS[3]
PX42	EBI - NRD
PX43	EBI - NWE0
PX44	EBI - NWE1
PX45	EBI - NWE3
PX46	EBI - SDCK
PX47	EBI - SDCKE
PX48	EBI - RAS
PX49	EBI - CAS
PX50	EBI - SDWE
PX51	EBI - SDA10
PX52	EBI - NANDOE
PX53	EBI - NANDWE

 Table 8-12.
 IO Pins without multiplexing (Continued)

8.8 Peripheral overview

8.8.1 External Bus Interface

- Optimized for Application Memory Space support
- Integrates Three External Memory Controllers:
 - Static Memory Controller
 - SDRAM Controller
 - ECC Controller
- Additional Logic for NAND Flash/SmartMedia[™] and CompactFlash[™] Support
 - SmartMedia support: 8-bit as well as 16-bit devices are supported
 - CompactFlash support: all modes (Attribute Memory, Common Memory, I/O, True IDE) are supported but the signals _IOIS16 (I/O and True IDE modes) and _ATA SEL (True IDE mode) are not handled.
- Optimized External Bus:
 - 16- or 32-bit Data Bus
 - Up to 26-bit Address Bus, Up to 64-Mbytes Addressable
 - Optimized pin multiplexing to reduce latencies on External Memories
- Up to 6 Chip Selects, Configurable Assignment:
 - Static Memory Controller on NCS0
 - SDRAM Controller or Static Memory Controller on NCS1
 - Static Memory Controller on NCS2
 - Static Memory Controller on NCS3, Optional NAND Flash/SmartMedia[™] Support
 - Static Memory Controller on NCS4 NCS5, Optional CompactFlash[™] Support

8.8.2 Static Memory Controller

- 6 Chip Selects Available
- 64-Mbyte Address Space per Chip Select
- 8-, 16- or 32-bit Data Bus
- Word, Halfword, Byte Transfers
- Byte Write or Byte Select Lines
- Programmable Setup, Pulse And Hold Time for Read Signals per Chip Select
- Programmable Setup, Pulse And Hold Time for Write Signals per Chip Select
- Programmable Data Float Time per Chip Select
- Compliant with LCD Module
- External Wait Request
- Automatic Switch to Slow Clock Mode
- Asynchronous Read in Page Mode Supported: Page Size Ranges from 4 to 32 Bytes

8.8.3 SDRAM Controller

- Numerous Configurations Supported
 - 2K, 4K, 8K Row Address Memory Parts
 - SDRAM with Two or Four Internal Banks
 - SDRAM with 16- or 32-bit Data Path
- Programming Facilities
 - Word, Half-word, Byte Access
 - Automatic Page Break When Memory Boundary Has Been Reached
 - Multibank Ping-pong Access
 - Timing Parameters Specified by Software
 - Automatic Refresh Operation, Refresh Rate is Programmable

- Energy-saving Capabilities
 - Self-refresh, Power-down and Deep Power Modes Supported
 - Supports Mobile SDRAM Devices
- Error Detection
 - Refresh Error Interrupt
- SDRAM Power-up Initialization by Software
- CAS Latency of 1, 2, 3 Supported
- Auto Precharge Command Not Used
- 8.8.4 Error Corrected Code Controller
 - Hardware Error Corrected Code (ECC) Generation
 - Detection and Correction by Software
 - Supports NAND Flash and SmartMedia[™] Devices with 8- or 16-bit Data Path.
 - Supports NAND Flash/SmartMedia with Page Sizes of 528, 1056, 2112 and 4224 Bytes, Specified by Software

8.8.5 Serial Peripheral Interface

- Supports communication with serial external devices
 - Four chip selects with external decoder support allow communication with up to 15 peripherals
 - Serial memories, such as DataFlash[™] and 3-wire EEPROMs
 - Serial peripherals, such as ADCs, DACs, CAN Controllers and Sensors
 - External co-processors
- Master or slave serial peripheral bus interface
 - 8- to 16-bit programmable data length per chip select
 - Programmable phase and polarity per chip select
 - Programmable transfer delays between consecutive transfers and between clock and data per chip select
 - Programmable delay between consecutive transfers
 - Selectable mode fault detection
- Very fast transfers supported
 - Transfers with baud rates up to MCK
 - The chip select line may be left active to speed up transfers on the same device

8.8.6 Two-wire Interface

- · Compatibility with standard two-wire serial memory
- One, two or three bytes for slave address
- Sequential read/write operations

8.8.7 USART

- Programmable Baud Rate Generator
- 5- to 9-bit full-duplex synchronous or asynchronous serial communications
 - 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
 - Parity generation and error detection
 - Framing error detection, overrun error detection
 - MSB- or LSB-first
 - Optional break generation and detection
 - By 8 or by-16 over-sampling receiver frequency
 - Hardware handshaking RTS-CTS
 - Receiver time-out and transmitter timeguard
 - Optional Multi-drop Mode with address generation and detection
 - Optional Manchester Encoding
- RS485 with driver control signal
- ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
 - NACK handling, error counter with repetition and iteration limit
- IrDA modulation and demodulation
 - Communication at up to 115.2 Kbps
- Test Modes 46
 - Remote Loopback, Local Loopback, Automatic Echo

8.8.8 Serial Synchronous Controller

- Provides serial synchronous communication links used in audio and telecom applications (with CODECs in Master or Slave Modes, I2S, TDM Buses, Magnetic Card Reader, etc.)
- · Contains an independent receiver and transmitter and a common clock divider
- Offers a configurable frame sync and data length
- Receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal
- Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

8.8.9 AC97 Controller

- Compatible with AC97 Component Specification V2.2
- Capable to Interface with a Single Analog Front end
- Three independent RX Channels and three independent TX Channels
 - One RX and one TX channel dedicated to the AC97 Analog Front end control
 - One RX and one TX channel for data transfers, connected to the DMACA
 - One RX and one TX channel for data transfers, connected to the DMACA
- Time Slot Assigner allowing to assign up to 12 time slots to a channel
- Channels support mono or stereo up to 20 bit sample length Variable sampling rate AC97 Codec Interface (48KHz and below)

8.8.10 Audio Bitstream DAC

- Digital Stereo DAC
- Oversampled D/A conversion architecture
 - Oversampling ratio fixed 128x
 - FIR equalization filter
 - Digital interpolation filter: Comb4
 - 3rd Order Sigma-Delta D/A converters
- Digital bitstream outputs
- Parallel interface
- Connected to DMA Controller for background transfer without CPU intervention

8.8.11 Timer Counter

- Three 16-bit Timer Counter Channels
- Wide range of functions including:
 - Frequency Measurement
 - Event Counting
 - Interval Measurement
 - Pulse Generation
 - Delay Timing
 - Pulse Width Modulation
 - Up/down Capabilities
- Each channel is user-configurable and contains:
 - Three external clock inputs
 - Five internal clock inputs
 - Two multi-purpose input/output signals
- Two global registers that act on all three TC Channels

8.8.12 Pulse Width Modulation Controller

- 4 channels, one 16-bit counter per channel
- Common clock generator, providing Thirteen Different Clocks
 - A Modulo n counter providing eleven clocks
 - Two independent Linear Dividers working on modulo n counter outputs
- Independent channel programming
 - Independent Enable Disable Commands
 - Independent Clock
 - Independent Period and Duty Cycle, with Double Bufferization
 - Programmable selection of the output waveform polarity
 - Programmable center or left aligned output waveform

8.8.13 MultiMedia Card Interface

- 2 double-channel MultiMedia Card Interface, allowing concurrent transfers with 2 cards
- Compatibility with MultiMedia Card Specification Version 2.2
- Compatibility with SD Memory Card Specification Version 1.0
- Compatibility with SDIO Specification Version V1.0.
- Cards clock rate up to Master Clock divided by 2
- · Embedded power management to slow down clock rate when not used
- · Each MCI has two slot, each supporting
 - One slot for one MultiMediaCard bus (up to 30 cards) or
 - One SD Memory Card
- · Support for stream, block and multi-block data read and write

8.8.14 PS/2 Interface

- Peripheral Bus slave
- PS/2 Host
- Receive and transmit capability
- · Parity generation and error detection
- Overrun error detection

8.8.15 USB Interface

- Supports Hi (480Mbps) and Full (12Mbps) speed communication
- Compatible with the USB 2.0 specification
- UTMI Compliant
- 7 Endpoints
- Embedded Dual-port RAM for Endpoints
- Suspend/Resume Logic (Command of UTMI)
- Up to Three Memory Banks for Endpoints (Not for Control Endpoint)
- 4 KBytes of DPRAM

8.8.16 Image Sensor Interface

- ITU-R BT. 601/656 8-bit mode external interface support
- Support for ITU-R BT.656-4 SAV and EAV synchronization
- Vertical and horizontal resolutions up to 2048 x 2048
- Preview Path up to 640*480
- Support for packed data formatting for YCbCr 4:2:2 formats
- Preview scaler to generate smaller size image 50
- Programmable frame capture rate

9. Boot Sequence

This chapter summarizes the boot sequence of the AT32AP7001. The behaviour after power-up is controlled by the Power Manager.

9.1 Starting of clocks

After power-up, the device will be held in a reset state by the Power-On Reset (POR) circuitry until the voltage has reached the power-on reset rising threshold value (see Electrical Characteristics for details). This ensures that all critical parts of the device are properly reset.

Once the power-on reset is complete, the device will use the XIN0 pin as clock source. XIN0 can be connected either to an external clock, or a crystal. The OSCEN_N pin is connected either to VDD or GND to inform the Power Manager on how the XIN0 pin is connected. If XIN0 receives a signal from a crystal, dedicated circuitry in the Power Manager keeps the part in a reset state until the oscillator connected to XIN0 has settled. If XIN0 receives an external clock, no such settling delay is applied.

On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have a divided frequency, all parts of the system recieves a clock with the same frequency as the XIN0 clock.

Note that the power-on reset will release reset at a lower voltage threshold than the minimum specified operating voltage. If the voltage is not guaranteed to be stable by the time the device starts executing, an external brown-out reset circuit should be used.

9.2 Fetching of initial instructions

After reset has been released, the AVR32AP CPU starts fetching instructions from the reset address, which is 0xA000_0000. This address lies in the P2 segment, which is non-translated, non-cacheable, and permanently mapped to the physical address range 0x0000_0000 to 0x2000_0000. This means that the instruction being fetched from virtual address 0xA000_0000 is being fetched from physical address 0x0000_0000. Physical address 0x0000_0000 is mapped to EBI SRAM CS0. This is the external memory the device boots from.

The code read from the SRAM CS0 memory is free to configure the system to use for example the PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the clocks to unused peripherals.

10. Ordering Information

Table 10-1.Ordering Information

				Temperature	
Ordering Code	Package	Package Type	Packing	Operating Range	
AT32AP7001-ALUT	QFP208	Green	Tray	Industrial (-40°C to 85°C)	

11. Errata

11.1 Rev. C

1. SPI FDIV option does not work

Selecting clock signal using FDIV = 1 does not work as specified.

Fix/Workaround

Do not set FDIV = 1.

2. SPI Chip Select 0 BITS field overrides other Chip Selects

The BITS field for Chip Select 0 overrides BITS fields for other Chip selects.

Fix/Workaround

Update Chip Select 0 BITS field to the relevant settings before transmitting with Chip Selects other than 0.

3. SPI LASTXFER may be overwritten

When Peripheral Select (PS) = 0, the LASTXFER-bit in the Transmit Data Register (TDR) should be internally discared. This fails and may cause problems during DMA transfers. Transmitting data using the PDC when PS=0, the size of the transferred data is 8- or 16-bits. The upper 16 bits of the TDR will be written to a random value. If Chip Select Active After Transfer (CSAAT) = 1, the behavior of the Chip Select will be unpredictable.

Fix/Workaround

- Do not use CSAAT = 1 if PS = 0

- Use GPIO to control Chip Select lines
- Select PS=1 and store data for PCS and LASTXFER for each data in transmit buffer.

4. SPI LASTXFER overrides Chip Select

The LASTXFER bit overrides Chip Select input when PS = 0 and CSAAT is used.

Fix/Workaround

- Do not use the CSAAT
- Use GPIO as Chip Select input
- Select PS = 1. Transfer 32-bit with correct LASTXFER settings.

5. MMC data write operation with less than 12 bytes is impossible.

MCI data write operation with less than 12 bytes is impossible. The Data Write operation with a number of bytes less than 12 leaves the internal MCI FIFO in an inconsistent state. Subsequent reads and writes will not function properly.

Fix/Workaround

Always transfer 12 or more bytes at a time. If less than 12 bytes are transferred, the only recovery mechanism is to perform a software reset of the MCI.

6. MMC SDIO interrupt only works for slot A

If 1-bit data bus width and on other slots than slot A, the SDIO interrupt can not be captured.

Fix/Workaround

Use slot A.

7. PSIF TXEN/RXEN may disable the transmitter/receiver

Writing a '0' to RXEN will disable the receiver. Writing '0' to TXEN will disable the transmitter.

Fix/Workaround

When accessing the PS/2 Control Register always write '1' to RXEN to keep the receiver enabled, and write '1' to TXEN to keep the transmitter enabled.

8. PSIF TXRDY interrupt corrupts transfers

When writing to the Transmit Holding Register (THR), the data will be transferred to the data shift register immediately, regardless of the state of the data shift register. If a transfer is ongoing, it will be interrupted and a new transfer will be started with the new data written to THR.

Fix/Workaround

Use the TXEMPTY-interrupt instead of the TXRDY-interrupt to update the THR. This ensures that a transfer is completed.

9. PWMcounter restarts at 0x0001

The PWM counter restarts at 0x0001 and not 0x0000 as specified. Because of this the first PWM period has one more clock cycle.

Fix/Workaround

- The first period is 0x0000, 0x0001, ..., period
- Consecutive periods are 0x0001, 0x0002, ..., period

10. PWM channel interrupt enabling triggers an interrupt

When enabling a PWM channel that is configured with center aligned period (CALG=1), an interrupt is signalled.

Fix/Workaround

When using center aligned mode, enable the channel and read the status before channel interrupt is enabled.

11. PWM update period to a 0 value does not work

It is impossible to update a period equal to 0 by the using the PWM update register (PWM_CUPD).

Fix/Workaround

Do not update the PWM_CUPD register with a value equal to 0.

12. PWM channel status may be wrong if disabled before a period has elapsed

Before a PWM period has elapsed, the read channel status may be wrong. The CHIDx-bit for a PWM channel in the PWM Enable Register will read '1' for one full PWM period even if the channel was disabled before the period elapsed. It will then read '0' as expected.

Fix/Workaround

Reading the PWM channel status of a disabled channel is only correct after a PWM period

13. TWI transfer error without ACK

If the TWI does not receive an ACK from a slave during the address+R/W phase, no bits in the status register will be set to indicate this. Hence, the transfer will never complete.

Fix/Workaround

To prevent errors due to missing ACK, the software should use a timeout mechanism to terminate the transfer if this happens.

14. SSC can not transmit or receive data

The SSC can not transmit or receive data when CKS = CKDIV and CKO = none in TCMR or RCMR respectively.

Fix/Workaround

Set CKO to a value that is not "None" and enable the PIO with output driver disabled on the TK/RK pin.

15. USART - RXBREAK flag is not correctly handled

The FRAME_ERROR is set instead of the RXBREAK when the break character is located just after the STOP BIT(S) in ASYNCHRONOUS mode.

Fix/Workaround

The transmitting UART must set timeguard greater than 0.

16. USART - Manchester encoding/decoding is not working.

Manchester encoding/decoding is not working.

Fix/Workaround

Do not use manchester encoding.

17. SPI - Disabling SPI has no effect on TDRE flag.

Disabling SPI has no effect on TDRE whereas the write data command is filtered when SPI is disabled. This means that as soon as the SPI is disabled it becomes impossible to reset the TDRE flag by writing in the SPI_TDR. So if the SPI is disabled during a PDC transfer, the PDC will continue to write data in the SPI_TDR (as TDRE keeps High) till its buffer is empty, and all data written after the disable command is lost.

Fix/Workaround

Disable PDC, 2 NOP (minimum), Disable SPI. When you want to continue the transfer: Enable SPI, Enable PDC.

18. SPI disable does not work in SLAVE mode.

SPI disable does not work in SLAVE mode.

Fix/Workaround

Read the last received data, then perform a Software Reset.

19. SCC - First Data transmitted after reset is not DATDEF.

In the first frame transmitted, the first transmitted data that follows the frame synchro is 0, not DATDEF. This happens when:

- 1. PDC is disabled
- 2. Reset the SSC

3. Configure the SSC with a transmit START condition different from CONTINUOUS (START = 0)

4. DATDEF = 1

5. Enable the SSC in transmission.

This trouble only appears after a reset and it is only the first frame is affected.

Fix/Workaround

Use the PDC to fill the THR after the enable of the SSC and before the start of the frame.

20. MCI - False data timeout error DTOE may occur.

If a small block (5 bytes) is read through the READ_SINGLE_BLOCK command (CMD17), the flag NOTBUSY will be set and a false data timeout error DTOE occurs.

Fix/Workaround

None.

21. SDRAM - Self-refresh mode

If Entry in Self-refresh mode is followed by SDRAM access and auto-refresh event, TRC timing is not checked for AUTO_REFRESH sequence.

Fix/Workaround

Set the value of TRAS field in user interface with TRC+1.

22. SPI - No TX UNDERRUN flag available

There is no TX UNDERRUN flag available, therefore in slave mode there is no way to be informed of a character lost in transmission.

Fix/Workaround

PDC/PDCA transfers: None.

Manual transfers (no PDC and TX slave only): Read the RHR every time the THR is written. The OVRS flag of the status register will track any UNDERRUN on the TX side.

23. HMATRIX - Fixed priority arbitration does not work

Fixed priority arbitration does not work.

Fix/Workaround

Use Round-robin arbitration instead.

24. OSC32 is not available for RTC, WDT, TIMERs and USARTs at startup

Right after startup the osc32 clock to internal modules is not valid. The osc32 clock will be valid for use approximately 128 osc32 cycles after the the first instruction is executed. This has consequences if you are planning to use the RTC, WDT, going into sleep mode and USARTs with SCK and TCs with TIMER_CLOCK0.

Fix/Workaround

Before executing any code the user should enable the RTC with the smallest prescaler and poll that the RTC is counting before doing anything in your program. Another way to ensure that the osc32 is valid is to use interrupts with TOP=1.

Example:

//reset the counter register

AVR32_RTC.val = 0x0; //enable the RTC with the smallest prescaler AVR32_RTC.ctrl = 0x1; //wait until the value increases while(AVR32_RTC.val == 0);

25. SPI can generate a false RXREADY signal in SLAVE mode

In slave mode the SPI can generate a false rxready signal during enabling of the SPI or during the first transfer.

Fix/Workaround

- 1. Set slave mode, set required CPOL/CPHA
- 2. Enable SPI
- 3. Set the polarity CPOL of the line in the opposite value of the required one
- 4. Set the polarity CPOL to the required one.
- 5. Read the RXHOLDING register

Transfers can now begin and RXREADY will now behave as expected.

26. EBI address lines 23, 24, and 25 are pulled up when booting up

After reset the EBI address lines 23, 24 and 25 are tristated with pullups. Booting from a flash larger than 8 MB using these lines will fail, as the flash will be accessed with these address bits set.

Fix/Workaround

Add external pulldown resistors (5 k Ω) on these lines if booting from a flash larger than 8 MB using these address lines.

27. SSC - Additional delay on TD output

A delay from 2 to 3 system clock cycles is added to TD output when:

TCMR.START = Receive Start, TCMR.STTDLY = more than ZERO, RCMR.START = Start on falling edge / Start on Rising edge / Start on any edge RFMR.FSOS = None (input) **Fix/Workaround** None.

28. SSC - TF output is not correct

TF output is not correct (at least emitted one serial clock cycle later than expected) when:

TFMR.FSOS = Driven Low during data transfer/ Driven High during data transfer

TCMR.START = Receive start

RFMR.FSOS = None (Input)

RCMR.START = any on RF (edge/level)

Fix/Workaround

None.

29. USART - TXD signal is floating in Modem and Hardware Handshaking mode

The TXD signal is floating in Modem and Hardware Handshaking mode, but should be pulled up.

Fix/Workaround

Enable pullup on this line in the PIO.

30. PWM - Impossible to update a period equal to 0 by using the CUPD register

It is impossible to UPDATE a period equal to 0 by the using of the UPDATE register (CUPD).

Fix/Workaround

To update a period equal to 0, write directly to the CPRD register.

31. WDT Clear is blocked after WDT Reset

A watchdog timer event will, after reset, block writes to the WDT_CLEAR register, preventing the program to clear the next Watchdog Timer Reset.

Fix/Workaround

If the RTC is not used a write to AVR32_RTC.ctrl.pcIr = 1, instead of writing to AVR32_WDT.clr, will reset the prescaler and thus prevent the watchdog event from happening. This will render the RTC useless, but prevents WDT reset because the RTC and WDT share the same prescaler. Another sideeffect of this is that the watchdog timeout period will be half the expected timeout period.

If the RTC is used one can disable the Watchdog Timer (WDT) after a WDT reset has occured. This will prevent the WDT resetting the system. To make the WDT functional again a hard reset (power on reset or RESET_N) must be applied. If you still want to use the WDT after a WDT reset a small code can be inserted at the startup checking the AVR32_PM.rcause register for WDT reset and use a GPIO pin to reset the system. This method requires that one of the GPIO pins are available and connected externally to the RESET_N pin. After the GPIO pin has pulled down the reset line the GPIO will be reset and leave the pin tristated with pullup.

32. USART - The DCD Signal is active high from the USART, but should be active low

The DCD signal is active high from the USART, but should be active low.

Fix/Workaround

An inverter should be added on this line on the PCB.

33. MCI Transmit Data Register (TDR) FIFO corruption

If the number of bytes to be transmitted by the MCI is not a multiple of 4, the Transmit Data Register (TDR) First In First Out data buffer control logic will become corrupted when transmit data is written to the TDR as 32-bit values.

Fix/Workaround

Configure the MCI Mode Register (MR) to accept 8-bit data input by writing a 1 to bit 13 (FBYTE), and transfer each byte of the transmit data to TDR by right aligning the useful value. This allows the number of bytes transferred into the TDR to match the number set up in the BCNT field of the MCI Block Register (BLKR).

34. Unreliable branch folding

In certain situations, branch folding does not work as expected.

Fix/Workaround

Write 0 to CPUCR.FE before executing any branch instructions after reset.

35. USB PLL jitter may cause packet loss during USB hi-speed transmission

The USB Hi-speed PLL accuracy is not sufficient for Isochronous USB hi-speed transmission and may cause packet loss. The observed bit-loss is typically < 125 ppm.

Fix/Workaround

Do not use isochronous mode if absolute data accuracy is critical.

11.2 Rev. B

Not sampled.

11.3 Rev. A

Not sampled.

12. Datasheet Revision History

1.

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

12.1 Rev. G 09/09

1. Updated "Errata" on page 38.

12.2 Rev. F 09/09

1. Updated "Errata" on page 38.

12.3 Rev. E 01/08

Updated Pin 208 from GND to VDDIO in "Package and Pinout" on page 9.

12.4 Rev. D 09/07

- 1. PIO Controller C Multiplexing table updated in "Peripherals" on page 75".
- 2. Added section "USBA" on page 81 in Clock Connections in "Peripherals" on page 75.
- 3. USBA feature list updated in "Peripherals" on page 75.
- 4. Renamed clk_slow to clk_osc32 in Table 9-4 on page 80.
- 5 Updated organisation of User Interface in "HSB Bus Matrix (HMATRIX)" on page 142.
- 6. Updated special bus granting mechanism in "HSB Bus Matrix (HMATRIX)" on page 142.
- 7. Added product dependencies in "DMA Controller (DMACA)" on page 2.
- 8. Added product dependencies in "Peripheral DMA Controller (PDC)" on page 233.
- 9. Added description of multi-drive in "Parallel Input/Output Controller (PIO)" on page 249.
- 10. Added MDER/MDDR/MDSR to pin logic diagram in "Parallel Input/Output Controller (PIO)" on page 249.
- 11. SPI pins must be enabled to use local loopback.
- 12. Updated description of the OVRES bit in "SPI Status Register" on page 310.
- 13. Updated bit description of TXEMPTY in the "USART Channel Status Register" on page 432.
- 14. Number of chip select lines updatedin figures and tables, changed from 8 to 6 in "Static Memory Controller (SMC)" on page 489.
- 15. Made the MDR register Read/Write instead of Read in "SDRAM Controller (SDRAMC)" on page 532.
- 16. Removed the PWSEN and PWSDIS bits from the "MCI Control Register" on page 585.
- 17. Added PDCFBYTE and removed the PWSDIV bits from the "MCI Mode Register" on page 586.

AT32AP7001

- Added note about reading the Status Register clears the interrupt flag in "Timer/Counter (TC)" on page 740.
- 19. Added debug operation to product dependencies in "Timer/Counter (TC)" on page 740.
- 20. Added debug operation to product dependencies in "Pulse Width Modulation Controller (PWM)" on page 774.
- 21. Updated "PLL Characteristics" on page 933.
- 22. Updated "Errata" on page 803.

12.5 Rev. C 07/07

- 1. Updated "Part Description" on page 2.
- 2. PC Signals removed in "Signals Description" on page 5
- 3. USB Signals updated in "Signals Description" on page 5.
- 4. The PX0 PX53 Signals added in "Signals Description" on page 5.
- 5. SDCS signals removed from PIO Controller Multiplexing tables in "Peripherals" on page 79.
- 6. LCD and MAC references removed form tables in "Memories" on page 77.
- 7. LCD and MAC controller references removed in "Peripheral overview" on page 94.
- 8. SDCS1 signal removed from figures and tables, and SDCS0 renamed to SDCS in "External Bus Interface (EBI)" on page 147.
- 9. SmartMedia renamed to NAND Flash in some description to avoid confusion in "External Bus Interface (EBI)" on page 147.
- 10. Updated Application block diagram in Figure 1-2 on page 1.
- 11. LCD removed from feature list in "Serial Peripheral Interface (SPI)" on page 297.
- 12. Updated the reset state of the SMC Mode register in Table 27-9 on page 523.
- 13. Updated "Mechanical Characteristics" on page 927.
- 14. Updated pad parameters in "DC Characteristics" on page 928.
- 15. Updated "Power Consumption by Peripheral in Active Mode" on page 930, LCD and MACB excluded.
- 16. Updated pad parameters in "Clock Characteristics" on page 931.
- 17. Updated "USB Transceiver Characteristics" on page 934.
- 18. Updated "EBI Timings" on page 939.

12.6 Rev. B 04/07

- 1. Updated "Features" on page 1.
- 2. Updated tables in "Signals Description" on page 4.
- 3. Updated Table 9-2 on page 77, Table 9-9 on page 82, and Table 9-10 on page 83 in the "Peripherals" on page 75.
- 4. Updated module names and abbreviations through the datasheet.

12.7 Rev. A 02/07

1. Initial revision.

Table of Contents

	Features	1
1	Part Description	2
2	Blockdiagram	3
3	Package and Pinout	7
	3.1AVR32AP7001	7
4	Signals Description	9
5	Power Considerations	. 14
	5.1Power Supplies	14
	5.2Power Supply Connections	14
6	I/O Line Considerations	. 15
	6.1JTAG pins	15
	6.2WAKE_N pin	15
	6.3RESET_N pin	15
	6.4EVTI_N pin	15
	6.5TWI pins	15
	6.6PIO pins	15
7	Memories	. 16
	7.1Embedded Memories	16
	7.2Physical Memory Map	16
8	Peripherals	. 18
	8.1Peripheral address map	18
	8.2Interrupt Request Signal Map	20
	8.3DMACA Handshake Interface Map	21
	8.4Clock Connections	22
	8.5External Interrupt Pin Mapping	23
	8.6Nexus OCD AUX port connections	23
	8.7Peripheral Multiplexing on IO lines	24
	8.8Peripheral overview	31
9	Boot Sequence	. 36
	9.1Starting of clocks	36
	9.2Fetching of initial instructions	36

AT32AP7001

10	Ordering Information	
11	Errata	
	11.1Rev. C	
	11.2Rev. B	44
	11.3Rev. A	44
12	Datasheet Revision History	45
	12.1Rev. G 09/09	45
	12.2Rev. F 09/09	45
	12.3Rev. E 01/08	45
	12.4Rev. D 09/07	45
	12.5Rev. C 07/07	46
	12.6Rev. B 04/07	46
	12.7Rev. A 02/07	46
	Table of Contents	

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support avr32@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel[®], Atmel logo and combinations thereof, AVR[®], AVR[®] logo and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.