MOSFET – Single P-Channel, Small Signal, SOT-1123, 1.0 x 0.6 mm

-20 V, -200 mA

Features

- Single P-Channel MOSFET
- Offers a Low $R_{DS(on)}$ Solution in the Ultra Small 1.0 x 0.6 mm Package
- 1.5 V Gate Voltage Rating
- Ultra Thin Profile (< 0.5 mm) Allows It to Fit Easily into Extremely Thin Environments such as Portable Electronics.
- This is a Pb–Free Device

Applications

- High Side Switch
- High Speed Interfacing
- Optimized for Power Management in Ultra Portable Equipment

MAXIMUM RATINGS (T_J = 25° C unless otherwise specified)

Para	meter		Symbol	Value	Unit
Drain-to-Source Voltag	je		V _{DSS}	-20	V
Gate-to-Source Voltag	е		V _{GS}	±8	V
Continuous Drain	Steady	$T_A = 25^{\circ}C$		-150	
Current (Note 1)	State	$T_A = 85^{\circ}C$	I _D	-110	mA
	t ≤ 5 s	$T_A = 25^{\circ}C$		-200	
Power Dissipation	Steady			-125	
(Note 1)	State	$T_A = 25^{\circ}C$	PD		mW
	t ≤ 5 s			-200	
Pulsed Drain Current		t _p = 10 μs	I _{DM}	-600	mA
Operating Junction and	Storage Tem	perature	_T_J,	-55 to	°C
			T _{STG}	150	
Source Current (Body D	Diode) (Note 2	2)	IS	-200	mA
Lead Temperature for S (1/8" from case for 1		ooses	ΤL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu.
- 2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D Max
	3.5 Ω @ –4.5 V	
2014	4.0 Ω @ -2.5 V	0.00.4
–20 V	5.5 Ω @ –1.8 V	–0.20 A
	7.0 Ω @ –1.5 V	

MARKING DIAGRAM

М

5 = Specific Device Code

(Rotated 90° Clockwise)

= Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTNUS3171PZT5G	SOT-1123 (Pb-Free)	8000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Мах	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ heta JA}$	1000	°C/W
Junction-to-Ambient – t = 5 s (Note 3)	$R_{ heta JA}$	600	

3. Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Conditio	on	Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D = -2$	250 μΑ	-20			V
Zero Gate Voltage Drain Current	I _{DSS}	V_{GS} = 0 V, V_{DS} = -5.0 V	$V_{GS} = 0 \text{ V}, \text{ V}_{DS} = -5.0 \text{ V}$ $T_{J} = 25^{\circ}\text{C}$			-50	
		V_{GS} = 0 V, V_{DS} = -5.0 V	$T_J = 85^{\circ}C$			-100	nA
		$V_{GS} = 0 V, V_{DS} = -16 V$	$T_J = 25^{\circ}C$			-200	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = :	±5.0 V			±100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = -250 \ \mu A$		-0.4	-0.7	-1.0	V
Drain-to-Source On Resistance	R _{DS(ON)}	$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -100 \text{ mA}$			2.0	3.5	Ω
		$V_{GS} = -2.5 \text{ V}, \text{ I}_{\text{D}} = -50 \text{ mA}$			2.6	4.0	
		$V_{GS} = -1.8 \text{ V}, I_D = -20 \text{ mA}$			3.4	5.5	
		$V_{GS} = -1.5 \text{ V}, \text{ I}_{D} = -10 \text{ mA}$			4.0	7.0	
		V _{GS} = -1.2 V, I _D = -	-1.0 mA		6.0		
Forward Transconductance	9 FS	V _{DS} = -5.0 V, I _D = -	125 mA		0.26		S
Source-Drain Diode Voltage	V _{SD}	V_{GS} = 0 V, I _S = -200 mA		-0.5		-1.4	V
CHARGES, CAPACITANCES AND GATE	RESISTANCE				-		
Input Capacitance	C _{ISS}	f = 1 MHz, V _{GS} = 0 V V _{DS} = -15 V			13		pF
Output Capacitance	C _{OSS}				3.4		
Reverse Transfer Capacitance	C _{RSS}				1.6		
SWITCHING CHARACTERISTICS, V_{GS} =	4.5 V (Note 4)						
Turn-On Delay Time	t _{d(ON)}				30		Γ
Rise Time	t _r	V _{GS} = -4.5 V, V _{DD} =	= –15 V,		56		
Turn-Off Delay Time	t _{d(OFF)}	$I_{\rm D} = -200 \text{ mA}, R_{\rm G} =$	= 2.0 Ω [´]		196		ns
Fall Time	t _f	1			145		

4. Switching characteristics are independent of operating junction temperatures

TYPICAL CHARACTERISTICS

Figure 9. Diode Forward Voltage vs. Current

SCALE 8:1

SOT-1123 CASE 524AA ISSUE C

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLE 1:	STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. BASE	PIN 1. ANODE	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. GATE
2. EMITTER	2. N/C	2. ANODE	2. CATHODE	2. SOURCE
3. COLLECTOR	3. CATHODE	3. CATHODE	3. ANODE	3. DRAIN

DOCUMENT NUMBER:	98AON23134D	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED	
DESCRIPTION:	SOT-1123, 3-LEAD, 1.0X0	.6X0.37, 0.35P	PAGE 1 OF 1
ON Semiconductor and M are trac	lemarks of Semiconductor Components Indu	stries LLC dha ON Semiconductor or its subsidiaries in the United States	and/or other countries

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DATE 29 NOV 2011

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS.
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE
- MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.34	0.40		
b	0.15	0.28		
b1	0.10	0.20		
С	0.07	0.17		
D	0.75	0.85		
Е	0.55	0.65		
е	0.35	0.40		
HE	0.95	1.05		
L	0.185 REF			
L2	0.05	0.15		

GENERIC MARKING DIAGRAM*

X = Specific Device Code M = Date Code

*This information is generic. Please refer to device data sheet for actual part marking.

Pb-Free indicator, "G" or microdot " •", may or may not be present.

© Semiconductor Components Industries, LLC, 2019

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>