

Automotive-grade N-channel 1200 V, 7.25 Ω typ., 1.5 A, MDmesh K5 Power MOSFET in an H²PAK-2 package

Features

Order code	V _{DS}	R _{DS(on)} max.	l _D	P _{TOT}
STH2N120K5-2AG	1200 V	10 Ω	1.5 A	60 W

- AEC-Q101 qualified
- Industry's lowest R_{DS(on)} x area
- Industry's best FoM (figure of merit)
- · Ultra-low gate charge
- 100% avalanche tested

Applications

Switching applications

Description

DTG1S23NZ

This very high voltage N-channel Power MOSFET is designed using MDmesh K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Product status STH2N120K5-2AG

Product summary ⁽¹⁾		
Order code	STH2N120K5-2AG	
Marking	2N120K5	
Package	H ² PAK-2	
Packing	Tape and reel	

 HTRB test was performed at 80% of V_{(BR)DSS} according to AEC-Q101 rev. C. All other tests were performed according to AEC-Q101 rev. D.

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V_{GS}	Gate-source voltage	±30	V	
1_	Drain current (continuous) at T _C = 25 °C	1.5	_	
I _D	Drain current (continuous) at T _C = 100 °C	1	Α	
I _{DM} ⁽¹⁾	Drain current (pulsed)	2.5	А	
P _{TOT}	Total power dissipation at T _C = 25 °C	60	W	
dv/dt ⁽²⁾	Peak diode recovery voltage slope	4.5	V/ns	
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns	
T _{stg}	Storage temperature range	55 to 150	°C	
TJ	Operating junction temperature range	-55 to 150		

- 1. Pulse width is limited by safe operating area.
- 2. $I_{SD} \le 1.5 \, A$, $di/dt = 100 \, A/\mu s$, V_{DS} (peak) $< V_{(BR)DSS}$, $V_{DD} = 80\% \, V_{(BR)DSS}$.
- $3. \quad V_{DS} \leq 960 \ V.$

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.08	°C // //
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	30	°C/W

1. When mounted on an 1-inch² FR-4, 2 Oz copper board.

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive	0.5	Α
E _{AS} ⁽²⁾	Single pulse avalanche energy	80	mJ

- 1. Pulse width is limited by T_J max.
- 2. Starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V.

DS12486 - Rev 5 page 2/14

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	1200			V
I	Zono moto vielto no due in comunit	V _{GS} = 0 V, V _{DS} = 1200 V			0.5	
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 1200 V, T _C = 125 °C ⁽¹⁾			100	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	V _{DS} = V _{GS} , I _D = 100 μA	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 0.5 A		7.25	10	Ω

^{1.} Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	124	-	
C _{oss}	Output capacitance	put capacitance $V_{DS} = 100 \text{ V}, f = 1 \text{ MHz}, V_{GS} = 0 \text{ V}$				pF
C _{rss}	Reverse transfer capacitance		-	0.5	-	
C _{o(tr)} ⁽¹⁾	Time-related equivalent capacitance	V _{GS} = 0 V, V _{DS} = 0 to 960 V	-	15	-	pF
C _{o(er)} ⁽²⁾	Energy-related equivalent capacitance	V _{GS} = 0 V, V _{DS} = 0 to 300 V	-	5	-	рі
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	16	-	Ω
Qg	Total gate charge	V _{DD} = 960 V, I _D = 1.5 A, V _{GS} = 0 to 10 V	-	5.3	-	
Q _{gs}	Gate-source charge	(see Figure 13. Test circuit for gate	-	0.8	-	nC
Q _{gd}	Gate-drain charge	charge behavior)	-	3.5	-	

^{1.} $C_{o(tr)}$ is a constant capacitance value giving the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

Table 6. Switching times

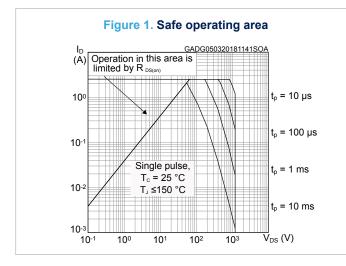
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 600 V, I _D = 0.75 A,	-	10.3	-	
t _r	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	7.8	-	
t _{d(off)}	Turn-off delay time	(see Figure 12. Test circuit for resistive load switching times and	-	34	-	ns
t _f	Fall time	Figure 17. Switching time waveform)	-	39	-	

DS12486 - Rev 5 page 3/14

^{2.} $C_{o(er)}$ is a constant capacitance value giving the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		1.5	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		2.5	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 1.5 A	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 1.5 A, di/dt = 100 A/µs,	-	350		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V	-	1.35		μC
I _{RRM}	Reverse recovery current	(see Figure 14. Test circuit for inductive load switching and diode recovery times)	-	7.7		Α
t _{rr}	Reverse recovery time	I _{SD} = 1.5 A, di/dt = 100 A/µs,	-	600		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V, T _J = 150 °C	-	2.09		μC
I _{RRM}	Reverse recovery current	(see Figure 14. Test circuit for inductive load switching and diode recovery times)	-	7.7		Α


^{1.} Pulse width is limited by safe operating area.

DS12486 - Rev 5 page 4/14

^{2.} Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

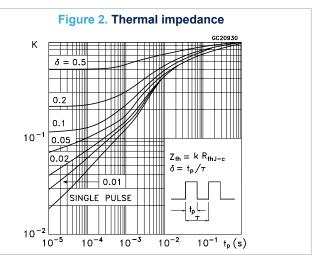


Figure 3. Output characteristics

GADG050320181127OCH
(A)

2.5

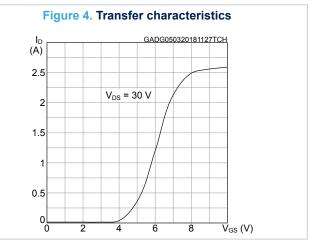
V_{GS} = 8, 9, 10 V

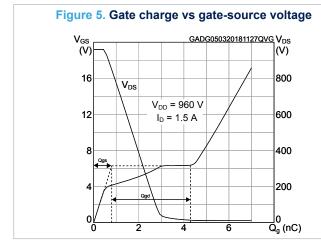
1.5

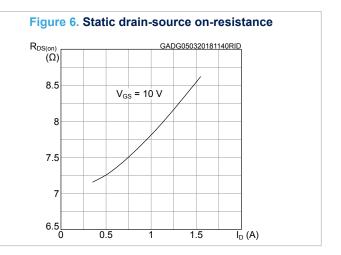
V_{GS} = 6 V

1

0.5


0


8


16

24

V_{DS} (V)

DS12486 - Rev 5 page 5/14

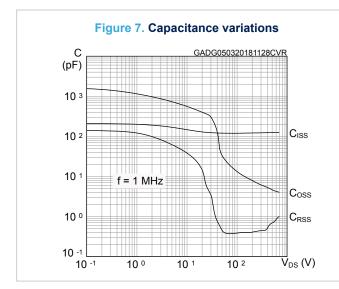
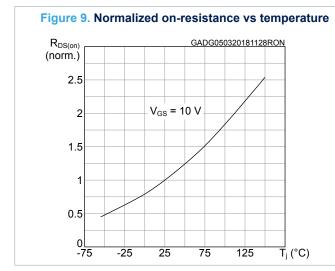
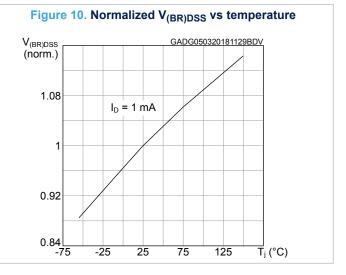
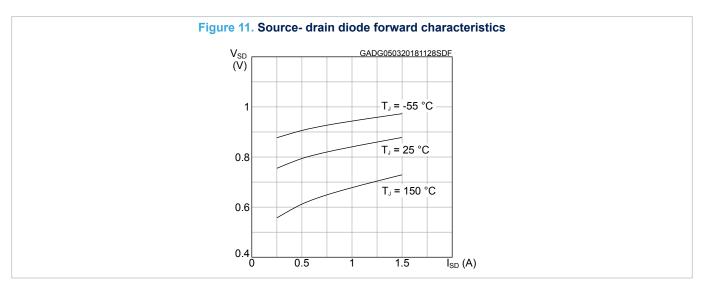





Figure 8. Normalized gate threshold voltage vs temperature $V_{GS(th)}$ (norm.) $I_{D} = 100 \,\mu\text{A}$ 0.8 0.6 0.4 -75 -25 25 75 125 T_{j} (°C)

DS12486 - Rev 5 page 6/14

3 Test circuits

Figure 12. Test circuit for resistive load switching times

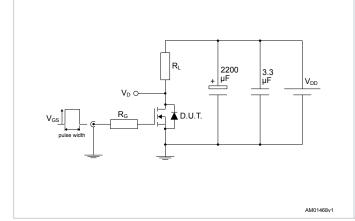


Figure 13. Test circuit for gate charge behavior

V_{GS}

Pulse width

2200

PL

AMD1469v10

Figure 14. Test circuit for inductive load switching and diode recovery times

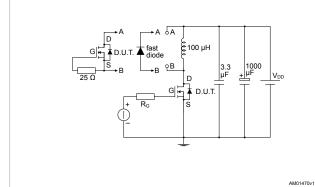


Figure 15. Unclamped inductive load test circuit

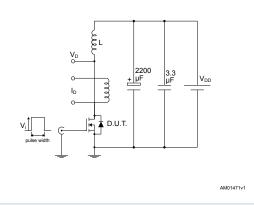


Figure 16. Unclamped inductive waveform

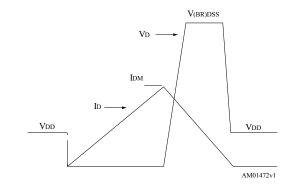
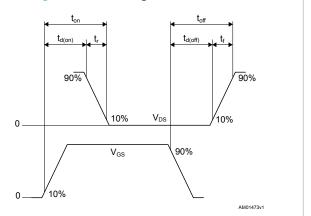
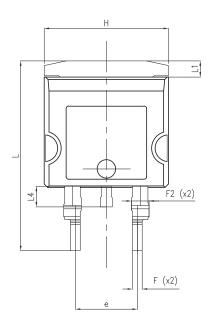
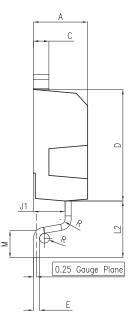
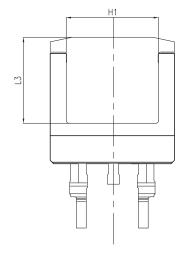



Figure 17. Switching time waveform

DS12486 - Rev 5 page 7/14




4 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.


4.1 H²PAK-2 package information

Figure 18. H²PAK-2 package outline

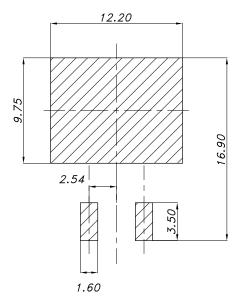
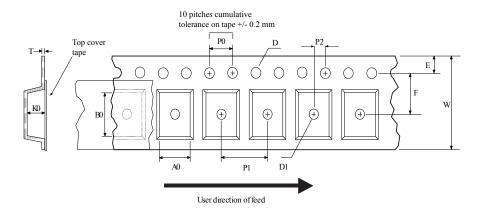

DS12486 - Rev 5 page 8/14

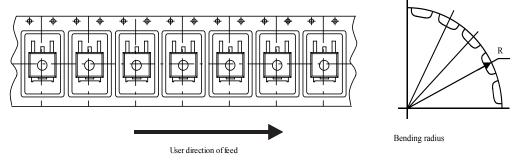
Table 8. H²PAK-2 package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.30		4.70
A1	0.03		0.20
С	1.17		1.37
D	8.95		9.35
е	4.98		5.18
E	0.50		0.90
F	0.78		0.85
F2	1.14		1.70
Н	10.00		10.40
H1	7.40	-	7.80
J1	2.49		2.69
L	15.30		15.80
L1	1.27		1.40
L2	4.93		5.23
L3	6.85		7.25
L4	1.50		1.70
М	2.60		2.90
R	0.20		0.60
V	0°		8°

Figure 19. H²PAK-2 recommended footprint

8159712_9


Note: Dimensions are in mm.


DS12486 - Rev 5 page 9/14

4.2 Packing information

Figure 20. Tape outline

AM08852v2

DS12486 - Rev 5 page 10/14

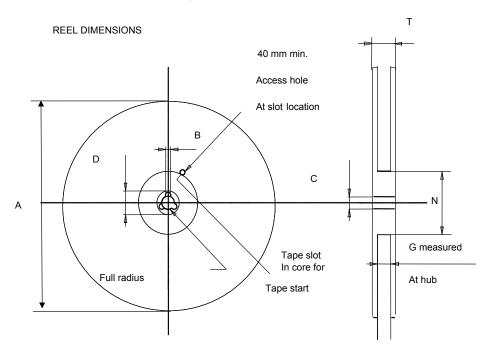


Figure 21. Reel outline

Table 9. Tape and reel mechanical data

	Таре			Reel	
Dim.	r	nm	Dim.	mı	m
Dim.	Min.	Max.	Dilli.	Min.	Max.
A0	10.5	10.7	А		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
E	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base q	uantity	1000
P2	1.9	2.1	Bulk qu	uantity	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

DS12486 - Rev 5 page 11/14

Revision history

Table 10. Document revision history

Date	Version	Changes
23-Mar-2018	1	Initial release. The document status is preliminary data.
30-Jul-2018	2	The document status was promoted from preliminary to production data. Updated title and features on cover page.
31-Jul-2018	3	Updated the current table. The date for revision 2 was erroneously reported as "19-Jun-2018" instead of "30-Jul-2018".
05-Sep-2018	4	Updated I _{DSS} parameter in <i>Table 4. Static</i> .
16-Jun-2020	5	Updated Section 4 Package information.

DS12486 - Rev 5 page 12/14

Contents

1	Elec	trical ratings	2	
2			3	
		Electrical characteristics (curves)		
3	Test	circuits	7	
4	Package information			
	4.1	H ² PAK-2 package information	8	
	4.2	Packing information	10	
Revision history			12	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

DS12486 - Rev 5 page 14/14