

3.3V, Hot Insertion, 8-Bit, 2-Port *NanoSwitch*TM

Features

- → Near-Zero propagation delay
- → 5-ohm switches connect inputs to outputs
- → Fast Switching Speed: 4.5ns (max.)
- → Ultra-Low Quiescent Power (0.2µA Typical)
 - Ideally suited for notebook applications
- → Packaging (Pb-free & Green):
 - 20-pin 173-mil wide plastic TSSOP (L)

Block Diagram

Description

Pericom Semiconductor's PI3B series of logic circuits are produced using the Company's advanced sub-micron CMOS technology, achieving industry leading performance.

The PI3B3244 features a set of 3.3V 8-bit bus switches, which is pinout and function compatible with the P74FCT244T, 74F244, and 74ALS/AS/LS2448-bit drivers. Two enable signals ($\overline{\text{BE}}$ n) turn the switches on similar to the enable signals of the 244. The bus switch create no additional propagation delay or ground bounce noise.

Pin Configuration

BE1 □ 1O	20 Vcc
1A0 <u>2</u>	19 BE2
2B3 🔲 3	18 1B0
1A1 🔲 4	17 2A3
2B2 5	16 1B1
1 A 2 🔲 6	15 2A2
2B1 7	14 1B2
1A3 🔲 8	13 2A1
2B0 🔲 9	12 1B3
GND ☐ 10	11 2A0

Pin Description

Pin Name	Description	
BEn	Bus Enable Input (Active LOW)	
A0-7	Bus A	
B0-7	Bus B	
GND	Ground	
V _{CC}	Power	

Truth Table(1)

BE1	BE2	1A, 1B	2A, 2B
Н	Н	Disconnect	Disconnect
L	Н	1A = 1B	Disconnect
Н	L	Disconnect	2A = 2B
L	L	1A = 1B	2A = 2B

Note:

1. H = High Voltage Level, L = Low Voltage Level

1

Absolute Maximum Ratings

Parameter		Max.	Units
Storage Temperature	-65	150	°C
Ambient Temperature with Power Applied		85	°C
Supply Voltage to Ground Potential		4.6	V
DC Input Voltage		4.6	V
DC Output Current		120	mA
Power Dissipation	-	0.5	W

Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 3.3V \pm 10$ %)

Parameters	Description	cription Test Conditions ⁽¹⁾		Typ (2)	Max	Units
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH Level	2.0			V
V_{IL}	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	V
I _{IH}	Input HIGH Current	V _{CC} = Max., V _{IN} = V _{CC}			±1	μΑ
I_{IL}	Input LOW Current	$V_{CC} = Max., V_{IN} = GND$			±1	μΑ
I _{OZH}	High Impedance Output Current	$0 \le I_N, Y_N \le V_{CC}$			±1	μΑ
V_{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18 \text{ mA}$			-1.2	V
Ron	Switch On Resistance ⁽³⁾	$V_{\rm CC} = Min., V_{\rm IN} = 0.0 V, I_{\rm ON} = 48 mA$ or $64 mA$		5	8	Ω
		$V_{CC} = Min, V_{IN} = 2.4V, I_{ON} = 15mA$		10	17	

Capacitance ($T_A = 25^{\circ}C$, f = 1 MHz)

Parameters ⁽¹⁾	ters ⁽¹⁾ Description Test Conditions		Тур	Units
C _{IN}	Input Capacitance	$V_{IN} = 0V$	3.0	pF
C _{OFF}	A/B Capacitance, Switch Off	$V_{IN} = 0V$	8.0	pF
Con	A/B Capacitance, Switch On	$V_{IN} = 0V$	16.0	pF

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at VCC = 3.3V, TA = 25°C ambient and maximum loading.
- 3. Measured by the voltage drop between A and B pin at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A,B) pins.
- 4. This parameter is determined by device characterization but is not production tested.

09/27/10

Power Supply Characteristics

Parameters	Description	Test Conditions(1)		Min	Typ (2)	Max	Units
I _{CC}	Quiescent Power Supply Current	V _{CC} = Max.	$V_{IN} = GND \text{ or } V_{CC}$		0.1	3.0	μΑ
ΔI_{CC}	Supply Current per Input @ TTL HIGH	V _{CC} = Max.	$V_{\rm IN} = 3.0 V^{(3)}$			750	μΑ

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at $V_{CC} = 3.3V$, +25°C ambient.
- 3. Per TTL driven input (control input only); A and B pins do not contribute to ICC.

Switching Characteristics over Operating Range

			Com.		
Parameters	Description	Test Conditions(1)	Min	Max	Units
t _{PLH} t _{PHL}	Propagation Delay ^(2,3) Ax to Bx			0.25	
t _{PZH}	Bus Enable Time BE to Ax or Bx	$CL = 50 \text{ pF}$ $RL = 500\Omega$	1.0	4.0	ns
t _{PHZ} t _{PLZ}	Bus Disable Time BE to Ax or Bx		1.0	4.5	

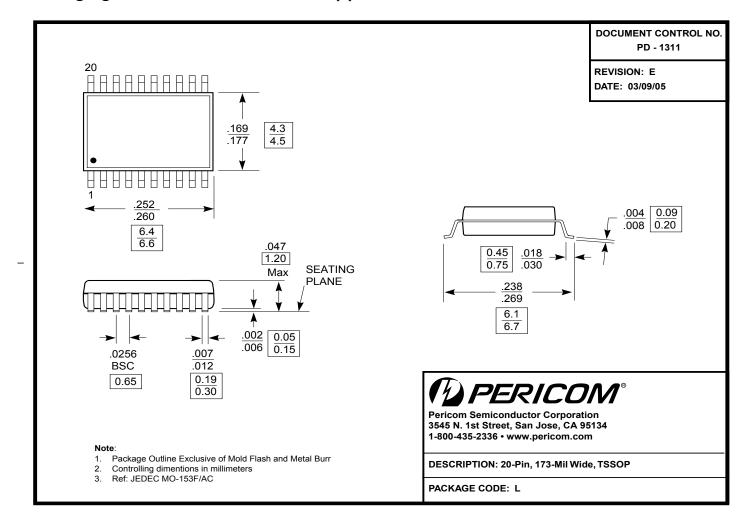
Notes:

- 1. See test circuit and wave forms.
- 2. This parameter is guaranteed but not tested on Propagation Delays.
- 3. The bus switch contributes no propagational delay other than the RC delay of the On-Resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for 50 pF load. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagational delay to the system. Propagational delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

Applications Information

Logic Inputs

The logic control inputs can be driven up to +3.6V regardless of the supply voltage. For example, given a +3.3V supply, IN may be driven low to 0V and high to 3.6V. Driving IN Rail-to-Rail* minimizes power consumption.


Power-Supply Sequencing and Hot-Plug Information

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V_{CC} and GND before applying signals to input/output or control pins.

Rail-to-Rail is a registeredtrademark of Nippon Motorola, Ltd.

Packaging Mechanical: 20-Pin TSSOP (L)

Ordering Information

Ordering Code	Package Code	Package Type
PI3B3244LE	L	Pb-free & Green, 20-pin TSSOP

 $^{{\}bf 1.}\ Thermal\ characteristics\ can\ be\ found\ on\ the\ company\ web\ site\ at\ www.pericom.com/packaging/$