

CMPA2738060F

60 W, 2.7 - 3.8 GHz, GaN MMIC, Power Amplifier

Description

Wolfspeed's CMPA2738060F is a packaged, high-power MMIC amplifier producing 85W of saturated output power over the 2.7 - 3.8 GHz frequency range. With 27dB of large signal gain and achieving 50% power-added efficiency or higher, the CMPA2738060F is ideally suited to support a variety of S-Band radar applications.

The CMPA2738060F also supports ease of use and straight-forward system integration. Matched to 50 ohms at both RF ports along with DC blocking capacitors, thermal-management is further enhanced in a bolt-down, flanged package allowing for long-pulse operation.

Package Type: 440219 PN: CMPA2738060F

Typical Performance Over 2.7 - 3.8 GHz ($T_c = 25^{\circ}C$)

Parameter	2.7 GHz	2.9 GHz	3.1 GHz	3.5 GHz	3.8 GHz	Units
Small Signal Gain	36.1	36.0	34.5	35.7	35.0	dB
Output Power ¹	88.0	86.5	74.0	81.0	81.2	W
Power Gain ¹	29.4	29.4	28.7	29.1	29.1	dB
PAE ¹	52.5	55.5	50.4	53.0	51.0	%

Note:

 $^{1}P_{IN} = 20 \text{ dBm}$

Features

- 35 dB Small Signal Gain
- 80 W Typical P_{SAT}
- Operation up to 50 V
- High Breakdown Voltage
- High Temperature Operation
- 0.5" x 0.5" Total Product Size

Applications

 Civil and Military Pulsed Radar Amplifiers

Rev. 1.0, 2022-9-30

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	150	N	ar ^o c
Gate-source Voltage	V _{GS}	-10, +2	V _{DC}	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	12	mA	25°C
Screw Torque	τ	40	in-oz	
	D	0.77	9C /W	300μsec, 20%, 85°C
Thermal Resistance, Junction to Case (packaged) ¹	R _{θJC}	1.44	°C/W	CW, 85°C

Note:

 $^{\rm 1}$ Measured for the CMPA2738050F at $P_{\rm DISS}$ = 64 W

Electrical Characteristics (Frequency = 2.7 GHz to 3.8 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, I_{D} = 15.2 \text{ mA}$
Gate Quiescent Voltage	V _{GS(Q)}	_	-2.7	—	V _{DC}	$V_{DD} = 50 \text{ V}, I_{DQ} = 280 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	9.9	14.1	_	A	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BD}	100	—	—	V	$V_{GS} = -8 \text{ V}, I_{D} = 15.2 \text{ mA}$
RF Characteristics ^{2,3}						
Small Signal Gain at 2.7 GHz		_	36.1	—		
Small Signal Gain at 3.1 GHz	S21	_	34.5	_	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 280 \text{ mA}$
Small Signal Gain at 3.8 GHz		-	35.0	—		
Output Power at 2.7 GHz		_	88.0	_		
Output Power at 3.1 GHz	Роит		86.5	—	w	$V_{DD} = 50 \text{ V}, I_{DQ} = 280 \text{ mA}, P_{IN} = 20 \text{ dBm}$
Output Power at 3.8 GHz		-	81.2	—		
Power Added Efficiency at 2.7 GHz		_	52.5	—		
Power Added Efficiency at 3.1 GHz	PAE	-	55.5	—	%	
Power Added Efficiency at 3.8 GHz		-	51.0	—		
Input Return Loss at 2.7 GHz		_	-11.3	—		
Input Return Loss at 3.1 GHz	S11	-	-25.0	—		$V_{DD} = 50 \text{ V}, I_{DQ} = 280 \text{ mA}$
Input Return Loss at 3.8 GHz		_	-11.5	_	dB	
Output Return Loss at 2.7 GHz		_	-8.5	—		
Output Return Loss at 3.1 GHz	S22	_	-11.0	_		
Output Return Loss at 3.8 GHz		_	-8.0	_		
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, V_{DD} = 50 V, I_{DQ} = 280 mA, P_{OUT} = 60 W

Notes:

¹ Scaled from PCM data

² All data pulse tested in CMPA2738060F-AMP

 3 Pulse Width = 300 μs , Duty Cycle = 20%

Rev. 1.0, 2022-9-30

Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DQ} = 280 \text{ mA}$, PW = $300\mu s$, DC = 20%, $P_{IN} = 20 \text{ dBm}$, -40° C at $P_{IN} = 18 \text{ dBm}$, Frequency = 3.1 GHz, $T_{BASE} = +25^{\circ}$ C

Figure 1. Output Power vs Frequency as a Function of Temperature

Figure 3. Power Added Eff. vs Frequency as a Function of Temperature

Figure 5. Drain Current vs Frequency as a Function of Temperature

Figure 2. Output Power vs Frequency as a Function of Input Power

Figure 4. Power Added Eff. vs Frequency as a Function of Input Power

Rev. 1.0, 2022-9-30

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 280 mA, PW = 300µs, DC = 20%, P_{IN} = 20 dBm, Frequency = 3.1 GHz, T_{BASE} = +25°C

Figure 7. Output Power vs Frequency as a Function of V_D

Figure 9. Power Added Eff. vs Frequency as a Function of V_D

Figure 11. Drain Current vs Frequency as a Function of V_D

Figure 8. Output Power vs Frequency as a Function of I_{DQ}

Rev. 1.0, 2022-9-30

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 280 mA, PW = 300µs, DC = 20%, P_{IN} = 20 dBm, Frequency = 3.1 GHz, T_{BASE} = +25°C

Figure 13. Output Power vs Input Power as a Function of Frequency

Figure 15. Large Signal Gain vs Input Power as a Function of Frequency

Figure 17. Gate Current vs Input Power as a Function of Frequency

Rev. 1.0, 2022-9-30

Figure 14. Power Added Eff. vs Input Power as a Function of Frequency

Figure 16. Drain Current vs Input Power as a Function of Frequency

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 280 mA, PW = 300µs, DC = 20%, P_{IN} = 20 dBm, Frequency = 3.1 GHz, T_{BASE} = +25°C

Figure 18. Output Power vs Input Power as a Function of Temperature

Figure 20. Large Signal Gain vs Input Power as a Function of Temperature

Figure 22. Gate Current vs Input Power as a Function of Temperature

Rev. 1.0, 2022-9-30

Figure 19. Power Added Eff. vs Input Power as a Function of Temperature

Figure 21. Drain Current vs Input Power as a Function of Temperature

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 280 mA, PW = 300µs, DC = 20%, P_{IN} = 20 dBm, Frequency = 3.1 GHz, T_{BASE} = +25°C

Figure 23. Output Power vs Input Power as a Function of IDQ

Figure 25. Large Signal Gain vs Input Power as a Function of I_{DQ}

Figure 27. Gate Current vs Input Power as a Function of I_{DQ}

Rev. 1.0, 2022-9-30

Figure 24. Power Added Eff. vs Input Power as a Function of I_{DQ}

Figure 26. Drain Current vs Input Power as a Function of I_{DQ}

8

Typical Performance of the CMPA2738060F

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 280 mA, CW, P_{IN} = 20 dBm, Frequency = 3.1 GHz, T_{BASE} = +25°C

Figure 28. Output Power vs Frequency as a Function of Temperaturee

Figure 30. Power Added Eff. vs Frequency as a Function of Temperature

Figure 32. Drain Current vs Frequency as a Function of Temperature

Figure 29. Output Power vs Frequency as a Function of Input Power

Figure 31. Power Added Eff. vs Frequency as a Function of Input Power

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 280 mA, CW, P_{IN} = 20 dBm, Frequency = 3.1 GHz, T_{BASE} = +25°C

Figure 34. Output Power vs Frequency as a Function of Voltage

Figure 36. Power Added Eff. vs Frequency as a Function of Voltage

Figure 38. Drain Current vs Frequency as a Function of Voltage

Rev. 1.0, 2022-9-30

Figure 35. Drain Current vs Frequency as a Function of Input Power

Figure 37. Power Added Eff. vs Frequency as a Function of Input Power

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 280 mA, CW, P_{IN} = 20 dBm, Frequency = 3.1 GHz, T_{BASE} = +25°C

Figure 40. Output Power vs Input Power as a Function of Frequency

Figure 42. Large Signal Gain vs Input Power as a Function of Frequency

Rev. 1.0, 2022-9-30

Figure 41. Power Added Eff. vs Input Power as a Function of Frequency

Figure 43. Drain Current vs Input Power as a Function of Frequency

Test conditions unless otherwise noted: $V_D = 50 V$, $I_{DQ} = 280 mA$, CW, $P_{IN} = 20 dBm$, Frequency = 3.1 GHz, $T_{BASE} = +25 °C$

Figure 45. Output Power vs Input Power as a Function of Temperature

Figure 47. Large Signal Gain vs Input Power as a Function of Temperature

Figure 49. Gate Current vs Input Power as a Function of Temperature

Rev. 1.0, 2022-9-30

Figure 46. Power Added Eff. vs Input Power as a Function of Temperature

Figure 48. Drain Current vs Input Power as a Function of Temperature

12

Typical Performance of the CMPA2738060F

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 280 mA, CW, P_{IN} = 20 dBm, Frequency = 3.1 GHz, T_{BASE} = +25°C

Figure 50. Output Power vs Input Power as a Function of I_{DQ}

Figure 52. Large Signal Gain vs Input Power as a Function of $I_{\mbox{\scriptsize DQ}}$

Figure 54. Gate Current vs Input Power as a Function of $I_{\mbox{\scriptsize DQ}}$

Rev. 1.0, 2022-9-30

Figure 51. Power Added Eff. vs Input Power as a Function of I_{DQ}

Figure 53. Drain Current vs Input Power as a Function of I_{DO}

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 280 mA, PW = 300µs, DC = 20%, P_{IN} = 20 dBm, Frequency = 3.1 GHz, T_{BASE} = +25°C

Figure 55. 2nd Harmonic vs Frequency as a Function of Temperature

Figure 57. 2nd Harmonic vs Output Power as a Function of Frequency

Figure 59. 2nd Harmonic vs Output Power as a Function of I_{DQ}

Figure 56. 3rd Harmonic vs Frequency as a Function of Temperature

Figure 58. 3rd Harmonic vs Output Power as a Function of Frequency

Rev. 1.0, 2022-9-30

Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DQ} = 280 \text{ mA}$, $P_{IN} = -20 \text{ dBm}$, Frequency = 3.1 GHz, $T_{BASE} = +25^{\circ}\text{C}$

Figure 61. Gain vs Frequency as a Function of Temperature

Figure 63. Input RL vs Frequency as a Function of Temperature

Figure 65. Output RL vs Frequency as a Function of Temperature

Figure 62. Gain vs Frequency as a Function of Temperature

Rev. 1.0, 2022-9-30

4600 Silicon Drive | Durham, NC 27703 | Tel: +1.919.313.5300

Test conditions unless otherwise noted: V_D = 50 V, I_{DQ} = 280 mA, P_{IN} = -20 dBm, Frequency = 3.1 GHz, T_{BASE} = +25°C

Figure 67. Gain vs Frequency as a Function of Voltage

Figure 69. Input RL vs Frequency as a Function Voltage

Figure 71. Output RL vs Frequency as a Function of Voltage

Figure 68. Gain vs Frequency as a Function of I_{DQ}

Figure 70. Input RL vs Frequency as a Function of I_{DQ}

Figure 72. Output RL vs Frequency as a Function of I_{DQ}

Rev. 1.0, 2022-9-30

Typical Pulse Droop Performance

Pulse Width	Duty Cycle (%)	Droop (dB)
10µs	5-25	0.30
50µs	5-25	0.30
100µs	5-25	0.30
300µs	5-25	0.35
1ms	5-25	0.40
5ms	5-25	0.55

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	СДМ	твр	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

CMPA2738060F-AMP Evaluation Board Bill of Materials

Designator	Description	Qty
C1	CAP, 15000pF, 100V, 0805, X7R	1
C2	CAP, 330μF, 20%, 100V, ELECT, MVY, SMD	1
R1	RES, 1/8W, 1206, +/-5%, 0 OHMS	1
R2	RES, 1/16W, 0603, +/-5%, 10K OHMS	1
L1	FERRITE, 22 OHM, 0805, BLM21PG220SN1	1
J1,J2	CONNECTOR, N-TYPE, FEMALE, W/0.500 SMA FLNG	2
J3	CONNECTOR, HEADER, RT>PLZ .1CEN LK 9POS	1
J4	CONNECTOR, SMB, STRAIGHT JACK, SMD	1
-	PCB, TACONIC, RF-35-0100-CH/CH	1
Q1	CMPA2738060F	1

CMPA2738060F-AMP Demonstration Amplifier Circuit

CMPA2738060F-AMP Demonstration Amplifier Circuit Schematic

CMPA2738060F-AMP Demonstration Amplifier Circuit Outline

Rev. 1.0, 2022-9-30

Product Dimensions CMPA2738060F (Package Type – 440219)

NOT TO SCALE

PIN	Function
1	V _{GG}
2	RFin
3	V _{GG}
4	V _{DD}
5	RFout
6	V _{DD}
7	Source
	•

NDTES

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

5.	ALL	PLATED	SURFACES	ARE	NI/AU

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
А	0.495	0.505	12.57	12.82
В	0.003	0.005	0.076	0.127
С	0.140	0.160	3.56	4.06
D	0.315	0.325	8.00	8.25
E	0.008	0.012	0.204	0.304
F	0.055	0.065	1.40	1.65
G	0.495	0.505	12.57	12.82
н	0.695	0.705	17.65	17.91
J	0.403	0.413	10.24	10.49
к	ø.	092	2.3	34
L	0.075	0.085	1.905	2.159
М	0.032	0.040	0.82	1.02

Rev.	1.0	, 20)22-	9-30	

20

Part Number System

Table 1.

Parameter	Value	Units
Lower Frequency	2.7	GHz
Upper Frequency	3.8	GHZ
Power Output	60	W
Package	Flange	_

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

Rev. 1.0, 2022-9-30

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA2738060F	GaN MMIC	Each	CHIP2TOGOSIGE CHIP2TOGOSIGE
CMPA2738060F-AMP	Test board with GaN MMIC installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

©2020-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.

Rev. 1.0, 2022-9-30