### FKPF5N80 ### **Application Explanation** - Switching mode power supply, light dimmer, electric flasher unit - TV sets, stereo, refrigerator, washing machine, bread maker - Electric blanket, solenoid driver, small motor control - · Photo copier, electric tool # **Bi-Directional Triode Thyristor Planar Silicon** ### Absolute Maximum Ratings T<sub>C</sub>=25°C unless otherwise noted | Symbol | Parameter | Rating | Units | |------------------|-------------------------------------------|--------|-------| | V <sub>DRM</sub> | Repetitive Peak Off-State Voltage (Note1) | 800 | V | | Symbol | Parameter | Conditions | | Rating | Units | |----------------------|-------------------------------------------|-----------------------------------------------------------------------------|------|------------|------------------| | I <sub>T (RMS)</sub> | RMS On-State Current | Commercial frequency, sine full wave 360° conduction, T <sub>C</sub> =104°C | | 5 | Α | | I <sub>TSM</sub> | Surge On-State Current | Sinewave 1 full cycle, peak value, | 50Hz | 50 | Α | | | | non-repetitive 60 | | 55 | Α | | I <sup>2</sup> t | I <sup>2</sup> t for Fusing | Value corresponding to 1 cycle of halfwave, surge on-state current, tp=10ms | | 12.5 | A <sup>2</sup> s | | di/dt | Critical Rate of Rise of On-State Current | I <sub>G</sub> = 2x I <sub>GT</sub> , tr ≤ 100ns | | 50 | A/μs | | $P_{GM}$ | Peak Gate Power Dissipation | | | 5 | W | | P <sub>G (AV)</sub> | Average Gate Power Dissipation | | | 0.5 | W | | $V_{GM}$ | Peak Gate Voltage | | | 10 | V | | I <sub>GM</sub> | Peak Gate Current | | | 2 | Α | | T <sub>J</sub> | Junction Temperature | | | - 40 ~ 125 | °C | | T <sub>STG</sub> | Storage Temperature | | | - 40 ~ 125 | °C | | V <sub>iso</sub> | Isolation Voltage | Ta=25°C, AC 1 minute, T <sub>1</sub> T <sub>2</sub> G terminal to case | | 1500 | V | ### **Thermal Characteristic** | Symbol | Parameter | Test Condition | Min. | Тур. | Max. | Units | |---------------|--------------------|---------------------------|------|------|------|-------| | $R_{th(J-C)}$ | Thermal Resistance | Junction to case (Note 4) | ı | ı | 3.9 | °C/W | ©2004 Fairchild Semiconductor Corporation Rev. A, April 2004 # $\textbf{Electrical Characteristics} \ \, \textbf{T}_{\text{C}} = 25^{\circ} \text{C unless otherwise noted}$ | Symbol | Parameter | | Test Condition | | Min. | Тур. | Max. | Units | |----------------------|--------------------------------------------------------------------|--------|--------------------------------------------------------------------------|-----------------|------|------|------|-------| | I <sub>DRM</sub> | Repetieive Peak Off-State Current V <sub>DRM</sub> applied | | - | - | 20 | μΑ | | | | V <sub>TM</sub> | On-State Voltage | | T <sub>C</sub> =25°C, I <sub>TM</sub> =7.5A<br>Instantaneous measurement | | - | - | 1.5 | V | | | 41.4.0 | I | V <sub>D</sub> =12V, R <sub>L</sub> =20Ω | T2(+), Gate (+) | - | - | 1.5 | V | | $V_{GT}$ | Gate Trigger Voltage (Note 2) | II | | T2(+), Gate (-) | - | - | 1.5 | V | | | | III | | T2(-), Gate (-) | - | - | 1.5 | V | | | 41.4.0 | I | V <sub>D</sub> =12V, R <sub>L</sub> =20Ω | T2(+), Gate (+) | - | - | 20 | mA | | $I_{GT}$ | Gate Trigger Current (Note 2) | II | | T2(+), Gate (-) | - | - | 20 | mA | | | | III | | T2(-), Gate (-) | - | - | 20 | mA | | $V_{GD}$ | Gate Non-Trigger Voltage | | T <sub>J</sub> =125°C, V <sub>D</sub> =1/2V <sub>DRM</sub> | | 0.2 | - | - | V | | I <sub>H</sub> | Holding Current | | V <sub>D</sub> = 12V, I <sub>TM</sub> = 1A | | - | - | 30 | mA | | IL | Latching Current | I, III | $V_D = 12V, I_G = 1.2I_{GT}$ | | - | - | 30 | mA | | | | II | | | - | - | 50 | mA | | dv/dt | Critical Rate of Rise of<br>Off-State Voltag | | V <sub>DRM</sub> = Rated, T <sub>j</sub> = 125°C<br>Exponential Rise | ·, | - | 300 | - | V/μs | | (dv/dt) <sub>C</sub> | Critical-Rate of Rise of Off-State<br>Commutating Voltage (Note 3) | | | | 10 | - | - | V/µs | - Notes: 1. Gate Open 2. Measurement using the gate trigger characteristics measurement circuit 3. The critical-rate of rise of the off-state commutating voltage is shown in the table below 4. The contact thermal resistance R<sub>TH(c-f)</sub> in case of greasing is 0.5 °C/W | Test Condition | Commutating voltage and current waveforms (inductive load) | |----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1. Junction Temperature T <sub>J</sub> =125°C | Supply Voltage Time | | 2. Rate of decay of on-state commutating current (di/dt) <sub>o</sub> = -3 0A/ms | Main Current (di/dt) <sub>C</sub> Time | | 3. Peak off-state voltage V <sub>D</sub> = 400V | Main Voltage Time | | _ | <ol> <li>Junction Temperature T<sub>J</sub>=125°C</li> <li>Rate of decay of on-state commutating current (di/dt)<sub>C</sub> = - 3.0A/ms</li> <li>Peak off-state voltage</li> </ol> | ### **Quadrant Definitions for a Triac** # **Typical Curves** NUMBER OF CYCLES AT 50Hz AND 60Hz Figure 1. Maximum On-state Characteristics Figure 2. Rated Surge On-state Current Figure 3. Gate Characteristics Figure 4. Gate Trigger Current vs Tj Figure 5. Gate Trigger Voltage vs Tj Figure 6. Transient Thermal Impedance ©2004 Fairchild Semiconductor Corporation Rev. A, April 2004 # Typical Curves (Continues) Figure 7. Allowable Ambient Temperature vs Rms On-state Current Figure 9. Maximum On-state Power Dissipation Figure 11. Holding Current vs Junction Temperature Figure 8. Allowable Case Temperature vs Rms On-state Current Figure 10. Repetitive Peak Off-state Current vs Junction Temperature Figure 12. Laching Current vs Junction Temperature ©2004 Fairchild Semiconductor Corporation Rev. A, April 2004 # Typical Curves (Continues) Figure 13. Breakover Voltage vs. Junction Temperature Figure 14. Gate Trigger Current vs. Gate Current Pulse Width Figure 15. Breakover Voltage vs. Rate of Rise of Off-State Voltage Figure 16. Commutation Characteristics # **Package Dimension** # TO-220F ### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. | $ACEx^{TM}$ | FACT Quiet Series™ | ImpliedDisconnect™ | PACMAN™ | SPM™ | |-----------------------------------|--------------------------------|--------------------|---------------------|------------------------| | ActiveArray™ | FAST® | ISOPLANAR™ | POPTM | Stealth™ | | Bottomless™ | FASTr™ | LittleFET™ | Power247™ | SuperFET™ | | CoolFET™ | FPS™ | MICROCOUPLER™ | PowerSaver™ | SuperSOT™-3 | | CROSSVOLT™ | FRFET™ | MicroFET™ | PowerTrench® | SuperSOT™-6 | | DOME™ | GlobalOptoisolator™ | MicroPak™ | QFET® | SuperSOT™-8 | | EcoSPARK™ | GTO™ . | MICROWIRE™ | QS™ | SyncFET™ | | E <sup>2</sup> CMOS <sup>TM</sup> | HiSeC™ | MSX <sup>TM</sup> | QT Optoelectronics™ | TinyLogic <sup>®</sup> | | EnSigna™ | I <sup>2</sup> C <sup>TM</sup> | MSXPro™ | Quiet Series™ | TINYOPTO™ | | FACT™ | i-Lo™ | $OCX^{TM}$ | RapidConfigure™ | TruTranslation™ | | Across the boar | d. Around the world.™ | OCXPro™ | RapidConnect™ | UHC™ | | The Power Fran | chise <sup>®</sup> | OPTOLOGIC® | SILENT SWITCHER® | UltraFET <sup>®</sup> | | Programmable A | | OPTOPLANAR™ | SMART START™ | VCX <sup>TM</sup> | ### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Advance Information | Formative or<br>In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. |